

LIGHTING BUSWAY 25A, 32A, 40A

STAY COMPETENT

– Table of content

	Pages
General Characteristics	1
Order Code System	2
Technical Characteristics	3
Standard Elements	4-8
Tap-Off Plugs	9
Fixing	10
Directive	11
Certificates	12

General Characteristic

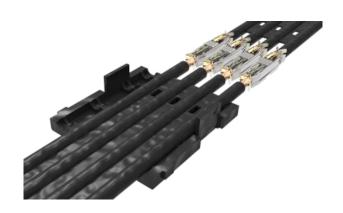
POWERDUCT Lighting Series Busbar Systems are designed, tested and manufactured using the latest technologies as per IEC 61439-6.

Tap-off Plugs

Arrangement of POWERDUCT PL Series Busbar systems are designed with different contacts to prevent incorrect assembly.

Safety

Earth contacts of the tap-off plug make first during assembly and the contacts break last during disassembly.

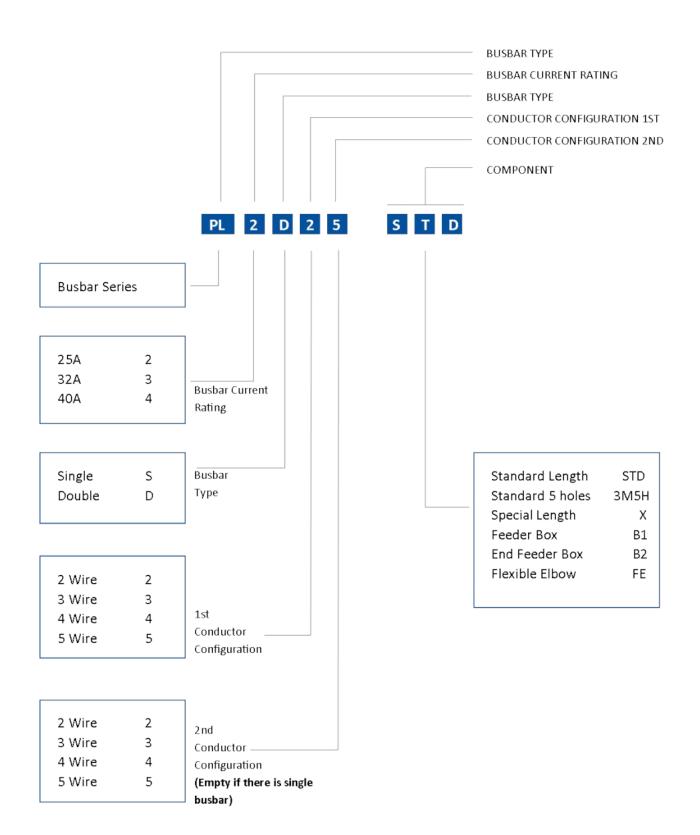

4 Plug-in Point are provided on Standard 3m Length

A total of 4 plug-in point of the single busbars and 8 plug-in point of the double busbar are provided as standard.

**For non-standard, please contact our technical office


Full Insulation

The busbar conductors are coated in flameproof Insulation material. Total security regarding human safety is provided even when the body is severely damaged due to external heavy impacts that may occur.


Tin Plated Joint Contacts

The contacts at the joining point of the busbar and the contacts of all tap-off units are tin coated. The tin coating minimizes the contact impedances, thus preventing the over-heating of the contacts in case of possible over-loads.

Order Code System

Technical Characteristics

			PL2D24	PL3D34	PL4D44
Rated Current	ln	Α	25	32	40
Standards	IEC60439	1-2			
Rated Insulation Voltage	Ui	V	1000	1000	1000
Rated Frequency	f	Hz 50/60			
Protection Degree	IP55				
Short-Circuit (1sec)	lcw	kA _{rms}	2.5	3	4
Short-Circuit (Peak)	lp	kA	3.75	4.5	6
Resistance	R ₂₀	mΩ/m	5.44	4.57	3.12
Reactance	X ₁	mΩ/m	2.05	1.66	1.13
Impedance	Z	mΩ/m	6	4.86	3.32
Joule Losses Atln	l ² R	W/m	3.4	4.45	4.64
L1,L2,L3,N (Cross Section)		mm^2	3.2	4	6
PE (Housing)		mm^2	24.75	24.75	24.75
PE (Conductor)		mm²	3.2	4	6
Weight (4 Conductor)		kg/m	0.95	0.98	1.15
Weight (5 Conductor)		kg/m	1.05	1.1	1.27

The maximum permitted load for the support of light fittings of the system is 15 kg. concentrated or 20 kg. distributed for a recommended support span of every 2 meters without any deformation of the housing.

Voltage Drop Calculation

Voltage drop of a system can be calculated with following formula taking into account the " α " load distribution constant.

For single phase;

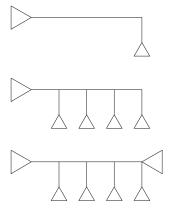
 $\Delta U = a.I.2L (R.\cos \phi + X.\sin \phi). 10-3 [V]$

For three phase;

 $\Delta U = a.\sqrt{3}.I.L (R.\cos \varphi + X.\sin \varphi). 10-3 [V]$

ΔU = Voltage Drop [V]

I = Rated Current [A]


L = Length of line [mt]

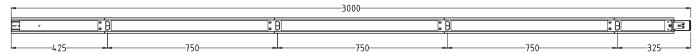
= Load Distribution Constant

R = Resistant $[m\Omega m]$ X = Reactance $[m\Omega m]$

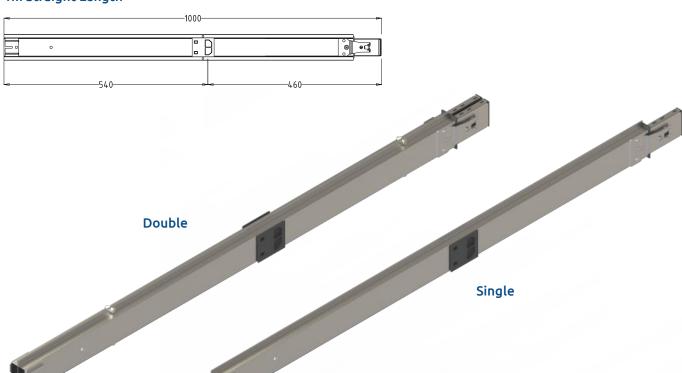
Ω

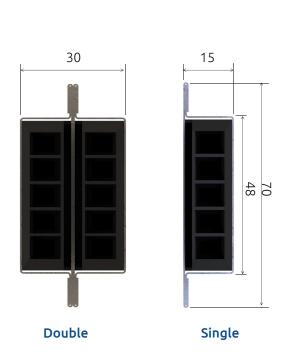
a=1.00

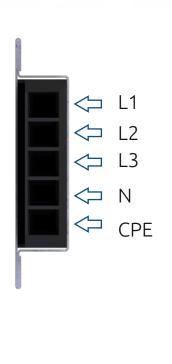
Load concentrated at the End of line. Line fed from one end of the line.


Distributed load. Line fed from one end of the line. α =0.50

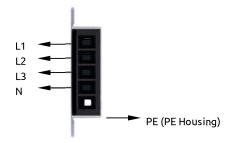
Distributed load. Line fed from both ends of the line. α =0.25

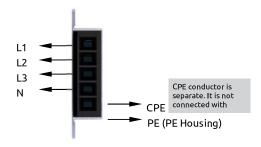

Standard Elements -



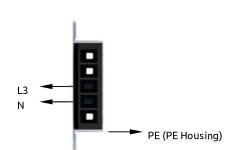

3m Straight Length

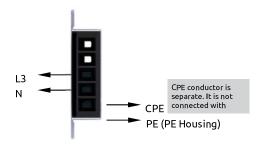
1m Straight Length



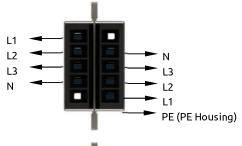


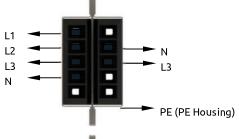
Standard Elements (Single)



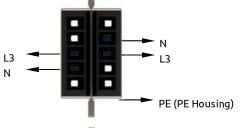

Current (A)	Description	System Conf.
25	PL 2S4 1x25 A Busbar	4
32	PL 3S4 1x32 A Busbar	4
40	PL 4S4 1x40 A Busbar	4
40	PL 454 1X40 A Busbai	4

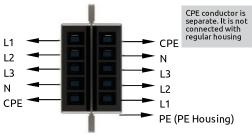
Current (A)	Description	System Conf.
25	PL 2S5 1x25 A Busbar	5
32	PL 3S5 1x32 A Busbar	5
40	PL 4S5 1x40 A Busbar	5

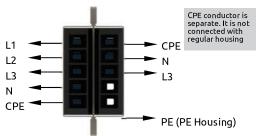

Current (A)	Description	System Conf.
25	PL 2S2 1x25 A Busbar	2
32	PL 3S2 1x32 A Busbar	2
40	PL 4S2 1x40 A Busbar	2

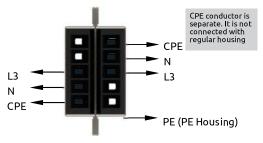

Current (A)	Description	System Conf.
25	PL 2S3 1x25 A Busbar	3
32	PL 3S3 1x32 A Busbar	3
40	PL 4S3 1x40 A Busbar	3

Standard Elements (Double)



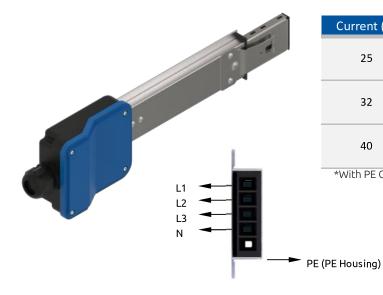

Current (A)	Description	System Conf.
25	PL 2D44 2x25 A Busbar	4+4
32	PL 3D44 2x32 A Busbar	4+4
40	PL 4D44 2x40 A Busbar	4+4


Current (A)	Description	System Conf.
25	PL 2D42 2x25 A Busbar	4+2
32	PL 3D42 2x32 A Busbar	4+2
40	PL 4D42 2x40 A Busbar	4+2


Current (A)	Description	System Conf.
25	PL 2D22 2x25 A Busbar	2+2
32	PL 3D22 2x32 A Busbar	2+2
40	PL 4D22 2x40 A Busbar	2+2

Current (A)	Description	System Conf.
25	PL 2D55 2x25 A Busbar	5+5
32	PL 3D55 2x32 A Busbar	5+5
40	PL 4D55 2x40 A Busbar	5+5

Current (A)	Description	System Conf.
25	PL 2D53 2x25 A Busbar	5+3
32	PL 3D53 2x32 A Busbar	5+3
40	PL 4D53 2x40 A Busbar	5+3



Current (A)	Description	System Conf.
25	PL 2D33 2x25 A Busbar	3+3
32	PL 3D33 2x32 A Busbar	3+3
40	PL 4D33 2x40 A Busbar	3+3

- Standard Elements (Single) -

Feeder Box (B1)

Current (A)	Description	Busbars
25	PL 2S4 - B1	PL 2S2 - PL 2S3
23	Feeder Box	PL 2S4 - PL 2S5
32	PL 3S4 - B1	PL 3S2 - PL 3S3
52	Feeder Box	PL 3S4 - PL 3S5
40	PL 4S4 - B1	PL 4S2 - PL 4S3
40	Feeder Box	PL 4S4 - PL 4S5

^{*}With PE Conductor and M25 Gland as standard.

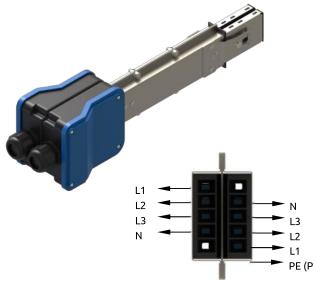
End Feeder Box (B2)

Current (A)	Description	Busbars
25	PL 2S4 - B2	PL 2S2 - PL 2S3
23	End Feeder Box	PL 2S4 - PL 2S5
32	PL 3S4 - B2	PL 3S2 - PL 3S3
32	End Feeder Box	PL 3S4 - PL 3S5
40	PL 4S4 - B2	PL 4S2 - PL 4S3
40	End Feeder Box	PL 4S4 - PL 4S5

^{*}With PE Conductor and M25 Gland as standard.

PE (PE Housing)

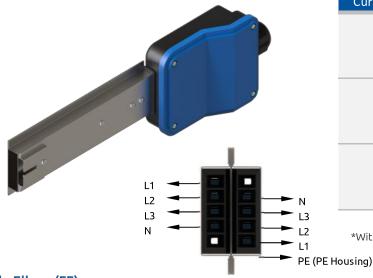
Flexible Elbow (FE)



Current (A)	Description	Busbars
25	PL 2S4 - FE	PL 2S2 - PL 2S3
23	Flexible Elbow	PL 2S4 - PL 2S5
32	PL 3S4 - FE	PL 3S2 - PL 3S3
32	Flexible Elbow	PL 3S4 - PL 3S5
40	PL 4S4 - FE	PL 4S2 - PL 4S3
40	Flexible Elbow	PL 4S4 - PL 4S5

- Standard Elements (Double)

Feeder Box (B1)



Current (A)	Description	Busbars
		PL 2D55 - PL 2D53
25	PL 2D44 - B1	PL 2D33 - PL 2D44
	Feeder Box	PL 2D42 - PL 2D22
		PL 3D55 - PL 3D53
32	PL 3D44 - B1	PL 3D33 - PL 3D44
	Feeder Box	PL 3D42 - PL 3D22
		PL 4D55 - PL 4D53
40	PL 4D44 - B1	PL 4D33 - PL 4D44
	Feeder Box	PL 4D42 - PL 4D22

*With PE Conductor and M25 Gland as standard.

PE (PE Housing)

End Feeder Box (B2)

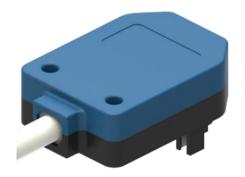
Current (A)	Description	Busbars
		PL 2D55 - PL 2D53
25	PL 2D44 - B2	PL 2D33 - PL 2D44
	End Feeder Box	PL 2D42 - PL 2D22
		PL 3D55 - PL 3D53
32	PL 3D44 - B2	PL 3D33 - PL 3D44
	End Feeder Box	PL 3D42 - PL 3D22
		PL 4D55 - PL 4D53
40	PL 4D44 - B2	PL 4D33 - PL 4D44
	End Feeder Box	PL 4D42 - PL 4D22

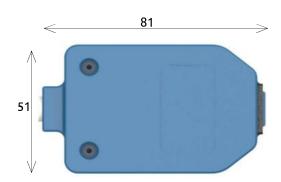
*With PE Conductor and M25 Gland as standard.

Flexible Elbow (FE)

Current (A)	Description	Busbars
		PL 2D55 - PL 2D53
25	PL 2D44 - FE	PL 2D33 - PL 2D44
	Flexible Elbow	PL 2D42 - PL 2D22
		PL 3D55 - PL 3D53
32	PL 3D44 - FE	PL 3D33 - PL 3D44
	Flexible Elbow	PL 3D42 - PL 3D22
		PL 4D55 - PL 4D53
40	PL 4D44 - FE	PL 4D33 - PL 4D44
	Flexible Elbow	PL 4D42 - PL 4D22

[•]Max diameter of feeder cable is Ø 11 mm

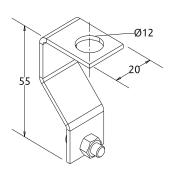

PL 10FD


Current (A)	ı	Description		Cable Length	Phase	Properties
	PL 10FD	Tap Off Plug	L1	1m. TTR Cable *	L1, N, PE	
10	PL 10FD	Tap Off Plug	L2	1m. TTR Cable *	L2, N, PE	
	PL 10FD	Tap Off Plug	L3	1m. TTR Cable *	L3, N, PE	

PL 10FD - CPE

Current (A)	Description		Cable Length	Phase	Properties
	PL 10FD-CPE Tap Off Plug	L1	1m. TTR Cable *	L1, N, CPE	
10	PL 10FD-CPE Tap Off Plug	L2	1m. TTR Cable *	L2, N, CPE	
	PL 10FD-CPE Tap Off Plug	L3	1m. TTR Cable *	L3, N, CPE	

^{*}Plug with different cable length available upon request



Universal Fixing Unit

Description		
PL-TP-U	Universal lighting fixture fixing unit.	

It is used to fix the line against a wall or to the floor or to the ceiling (by threaded rod or by wall plug). It can be used to suspend lamp from the line, too. Suggested distance between brackets: max. 3 m.

Double Single

EC DECLARATION OF CONFORMITY

According to EC - Directive

2006/95/EC "Low - Voltage - Directive"

Product Group Powerduct PL Series Busway System

Manufacturer Power Plug Busduct Sdn Bhd (Company No. : 545918-D)

No. 17, Jalan SiLC 1/4, Kawasan Perindustrian SiLC,

79200 Iskandar Puteri, Johor, Malaysia.

This is to attest, under our sole responsibility, that the aforementioned products conforms with the regulations and guidelines of the following standards.

Standard: IEC 61439-6

Type Test:

- 1. Temperature-rise limits
- 2. Dielectric Properties
- 3. Short Circuit Resistance
- 4. The effectiveness of the Protective Circuit
- 5. Clearances and Creepage distance
- 6. Mechanical Operation

- 7. Degree of Protection
- 8. Insulation Material Thermal Strength
- 9. Electrical Characteristics
- 10. Structural Strength
- 11. Crushing Resistance

Date

21 February 2014

Power Plug Busduct Sdn Bhd

Power Plug Busduct Sdn Bhd

No. 17, Jalan SiLC 1/4, Kawasan Perindustrian SiLC, 79200 Iskandar Puteri, Johor, Malaysia.

Tel: +607-532 1988 Fax: +607-532 1177 http://www.ppbc.com.my

POWER PLUG BUSDUCT SDN BHD (Co.No.545918-D)

No.17, Jalan SiLC 1/4, Kawasan Perindustrian SiLC,

79200 Iskandar Puteri, Johor, Malaysia.

Johor Darul Ta'zim, Malaysia.

Tel: +607-532 1988 /+607-5321922

Fax: +607-532 1177

Website: www.ppbc.com.my

Publish in year 2019

** Technical details and dimesions for the roducts are subject to continuing revision and engineering update without notice.