

Außenluft- und Fortlufttechnik

Hoch spezialisiert. Breit aufgestellt.

Die BerlinerLuft. produziert und liefert spezifische Komponenten und Systeme zur Belüftung und Klimatisierung. Sowohl von Nichtwohngebäuden als auch im Industrieanlagenbau.

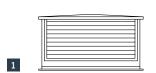
Ein öffentliches Gebäude erfordert eine andere Luftbehandlung als ein industrieller Produktionsprozess: In Bürogebäuden, Einkaufszentren, Bibliotheken oder Krankenhäusern schaffen unsere Produkte und Systeme größtmögliche Behaglichkeit, thermischen Komfort und hygienische Bedingungen.

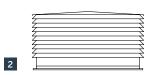
Für industrielle Produktionsabläufe verschiedenster Branchen entwickeln wir Lösungen und Produkte. Unsere Geräte und

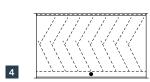
Systeme sorgen beispielsweise für den sauberen Abtransport von heißen, toxischen oder aggressiven Medien, für Trocknung oder Entstaubung. Für regenerative Abluftsysteme liefern wir auf den jeweiligen Bedarf angepasste Komponenten und entwickeln Akustik-Lösungen zur Reduzierung von Schall.

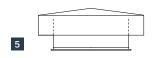
Sei es Komfortlüftung oder Prozesslufttechnik – wir liefern Ihnen maßgeschneiderte Produkte und Systeme mit höchstem Anspruch an Effizienz und Wirtschaftlichkeit.

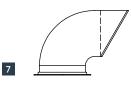
Branchen & Anwendungen

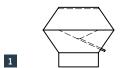

Dachhauben

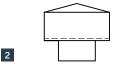

Die Dachzonen von Gebäuden sind neben der Fassade und dem Freigelände ein wichtiger Raum, um Frischoder Fortluft von raumlufttechnischen Anlagen zu- oder abzuführen. Hierzu stehen verschiedene Ausführungen von Dachhauben zur Verfügung.

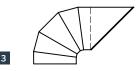

Außenluft- und Fortlufttechnik Übersicht

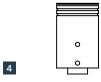

DACHHAUBEN ECKIG



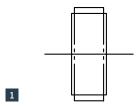


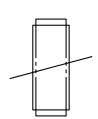



- 1 | Dachlüftungsaufsatz DHE/DLA
- 2 | Lamellenhaube DHE/LH
- 3 | Deflektorhaube DHE/DFH-E-Eco
- 4 | Horizontaler Regenabscheider DHE/HRA


- 5 | Außenlufthaube DHE/ALH
- 6 | Wetterhaube DHE/WH
- 7 | Ausblasbogen DHE/ABB-90° Ansaugbogen DHE/ASB-135°
- 8 | Regenkragen DHE/RK

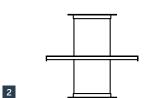
DACHHAUBEN RUND

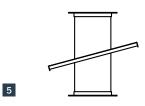


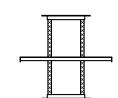

6

- 1 | Deflektorhaube DHR/DFH
- 2 | Dachhaube DHR/VH
- 3 | Ausblasbogen DHR/ASB-90° Ansaugbogen DHR/ABB-135°

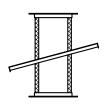
- 4 | Fortlufthaube DHR/VHA
- 5 | Frisch- und Fortlufthaube DHR/VHP
- 6 | Lamellenhaube DHR/VHL


DACHDURCHFÜHRUNGEN ECKIG

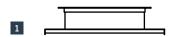



4

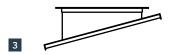
- 1 | Dachdurchführung ohne Lasteintrag Flachdach
- 2 | Dachdurchführung für Lasteintrag Flachdach
- 3 | Dachdurchführung für Lasteintrag Flachdach isoliert



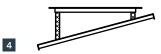
- 4 | Dachdurchführung ohne Lasteintrag Schrägdach
- 5 | Dachdurchführung für Lasteintrag Schrägdach
- 6 | Dachdurchführung für Lasteintrag Schrägdach isoliert


3

6



Sonderausführungen auf Anfrage.


DACHSOCKEL ECKIG

- 1 | Dachsockel mit Lasteintrag Flachdach
- 2 | Dachsockel mit Lasteintrag Flachdach isoliert

- 3 | Dachsockel mit Lasteintrag Schrägdach
- 4 | Dachsockel mit Lasteintrag Schrägdach isoliert

Außenluft- und Fortlufttechnik

ALLGEMEINES

Die Dachzonen von Gebäuden sind, neben der Fassade und dem freien Gelände, die wichtigste Stelle um Frisch- oder Fortluft von raumlufttechnischen Anlagen dem Gebäude zuoder abzuführen. Je nach Verwendungszweck stehen dafür verschiedene Ausführungen von Dachhauben zur Verfügung.

Zur sorgfältigen Auslegung von Dachhauben sind wesentliche Faktoren zu beachten:

Verwendungszweck
Luftmenge
Ansaug- und Ausblasgeschwindigkeit
Druckverlust
Eigengeräusch
Aspekte der Gestaltung

Masse

Dachhauben sollten die Gebäude und Anlagen vor Regenwassereinfall schützen. Diese Anforderung ist durch die konstruktive Gestaltung, die richtige Auswahl und den sachgemäßen Einsatz zu gewährleisten. Um eventuellen Wassereinbrüchen durch sekundäre Maßnahmen vorzubeugen, sollten planungsseitig Vorkehrungen getroffen werden.

AUSFÜHRUNGSARTEN

Dachlüftungshauben werden in der Regel aus einer stabilen Blechkonstruktion gefertigt. Dabei wird die Basisausführung meistens durch gefalzte oder punktgeschweißte Bleche zusammengefügt. Die Falzverbindungen bzw. Blechüberlappungen werden an den erforderlichen Stellen mit einem UV-beständigen und silikonfreien Dichtwerkstoff versehen.

Für anspruchsvolle Anforderungen können Dachhauben in geschweißter Ausführung hergestellt werden. Dies sollte bereits im Planungsstadium entschieden werden.

Hinweise

Nicht alle Dachhauben sind schlagwettersicher!

BerlinerLuft. Hauben haben keine Zulassung für die Entrauchung. Werden sie zu Zwecken der Entrauchung eingesetzt, muss der Auftraggeber bei den zuständigen Behörden eine Genehmigung einholen.

Die Befestigung am Dach erfolgt in der Regel über Dachdurchführungen oder Dachsockel. Ausführungshinweise sind in einem der folgenden Katalogabschnitte aufgeführt.

Ohne weitere bauseitige Angaben können die Hauben bis zu einer Kantenlänge von 2000 mm in der Windlastzone 2 bis zu 10 m Gebäudehöhe verbaut werden.

WERKSTOFFE

Materialart	Güte	Norm
Stahlblech verzinkt	DX51D + Z275 MA-C	DIN EN 10346 / 10143
VA- Bleche (Oberfläche 2B)	1.4301 (V2A)	DIN EN 10088
Aluminium	AIMg3 (3.3535; EN AW-5754)	DIN EN 485-2

Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.

Dachlüftungsaufsatz DHE/DLA

ANWENDUNG

Dachlüftungsaufsätze nutzen das Wirkprinzip von Wetterschutzgittern. Bei der Auswahl des Luftdurchlasses sollte – im Interesse eines relativ guten Schutzes gegen eindringenden Niederschlag – die mittlere Ansauggeschwindigkeit im freien Querschnitt max. 2 m/s betragen.

Der Dachlüftungsaufsatz DHE/DLA ist ein universell einsetzbarer Dachaufbau für die Außen- und Fortluftführung von RLT-Anlagen.

Haupteinsatzgebiete sind:

Fortluftabführung
Außenluftansaugung
Natürliche Lüftung (Tiefgaragen, Warmbetriebe)
Lüftung von Aufzugsschächten

Sammelabdeckungen für mehrere kleine RLT-Anlagen, getrennt nach Zu- und Abluft

Beachte

Bei hoher Luftfeuchte und Temperaturen < 0 °C besteht Vereisungsgefahr der Schutzgitter. Dachlüftungsaufsätze sind nicht schlagwettersicher.

KONSTRUKTIVER AUFBAU

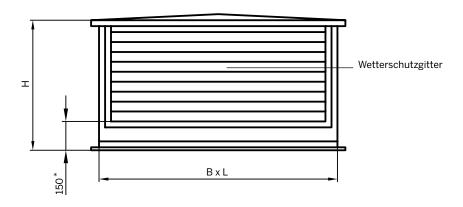
Der Dachlüftungsaufsatz erhält je nach Baugröße eine stabile Gehäusekonstruktion aus gekantetem Blech oder Kastenprofilen. Diese Gehäusekonstruktion wird je nach Bauform mit den entsprechenden demontierbaren Wetterschutzgittern inkl. Vogelschutzgitter bestückt. Das aufgesetzte Dach mit Abtropfkante erhält eine leichte Dachneigung zum sicheren Ablauf von Regenwasser. Für besondere Einsatzfälle kann das Dach abnehmbar oder klappbar gestaltet werden.

Der Fußpunkt des Dachlüftungsaufsatzes wird entsprechend der örtlichen Anforderungen gestaltet. Die Basisausführung erhält ein umlaufend vorgelochtes Winkelprofil zur sicheren Befestigung des Dachlüftungsaufsatz am Dachaufbau (siehe Abs. Dachdurchführungen/Dachsockel).

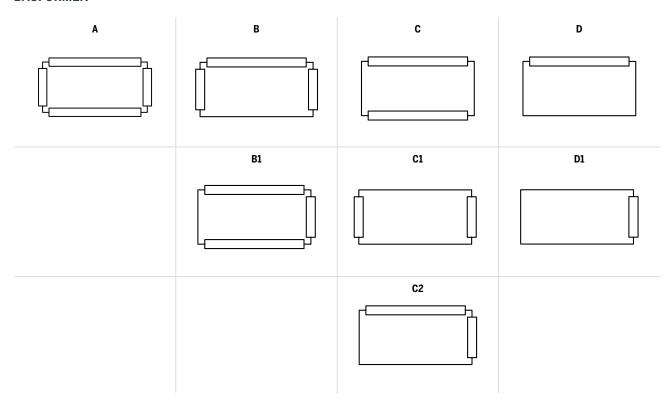
WERKSTOFFE

Materialart	Güte	Norm
Stahlblech verzinkt	DX51D + Z275 MA-C	DIN EN 10346 / 10143
VA- Bleche (Oberfläche 2B)	1.4301 (V2A)	DIN EN 10088
Aluminium	AIMg3 (3.3535; EN AW-5754)	DIN EN 485-2

Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.

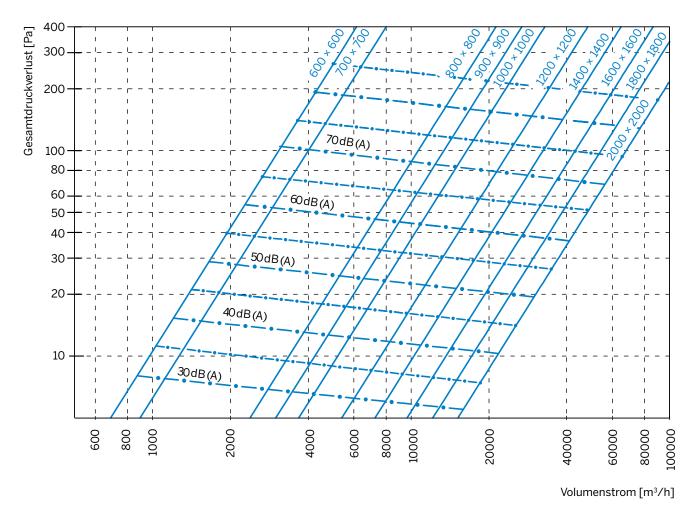


Dachlüftungsaufsatz DHE/DLA


Dachlüftungsaufsatz DHE/DLA

PRINZIPSKIZZE

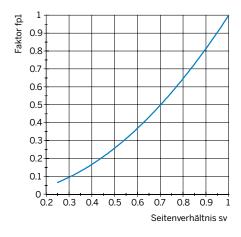
^{*} Standardmaß – andere Abmessungen möglich


BAUFORMEN

ABMESSUNGEN UND MASSEN

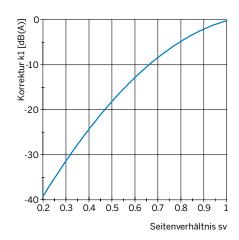
Technische Parameter bei Auslegung auf Anfrage über BerlinerLuft.

DRUCKVERLUST / STRÖMUNGSGERÄUSCH [Diagramm 1]



Druckverlust und Strömungsgeräusch des DHE/DLA mit quadratischem Anschlussquerschnitt. Diagramm gültig für Außenluft – für Fortluft ist von einem 20 % niedrigerem Druckverlust und 3dB(A) geringerem Schallleistungspegel auszugehen.

Dachlüftungsaufsatz DHE/DLA


DRUCKVERLUST

Umrechnung quadratisch auf rechteckig [Diagramm 2]

SCHALLLEISTUNG

Umrechnung quadratisch auf rechteckig [Diagramm 3]

UMRECHNUNG AUF NICHT-QUADRATISCHE DACHLÜFTUNGSAUFSÄTZE (NÄHERUNG)

Umrechnung

$$\Delta p_{\parallel} = \Delta p_{\parallel} \times fp1$$

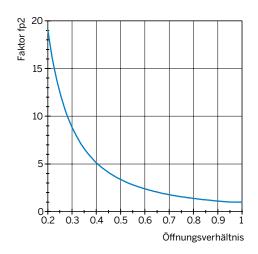
$$L_{_{\mathrm{WA}}} = L_{_{\mathrm{WA}}} + \mathbf{k1}$$

Beispiel

 $V = 10000 \, m^3 / h$ Größe $□ 800 \times 800 \, mm$ $Δp <math>□ = 90 \, Pa \, (Diagramm \, 1)$

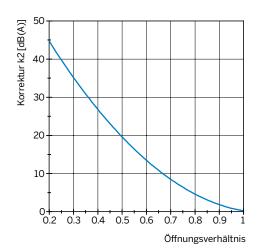
Größe $800 \times 1000 \text{ mm}$ (Seitenverhältnis 0,8)

Faktor fp1 = 0,65 (Diagramm 2) Δp_{Π} = 90 Pa × 0,65 = 59 Pa Beispiel


 $L_{wA} = 70 dB(A)$ (aus oberem Diagramm)

Größe $800 \times 1000 \, \text{mm}$ (Seitenverhältnis 0,8)

Korrektur k1 = -5 dB(A) (Diagramm 3) $L_{wA\square}$ = 70 dB(A) -5 dB(A) = 65 dB(A)


ANDERE BAUFORMEN

Umrechnung Faktor fp2 [Diagramm 4]

ANDERE BAUFORMEN

Umrechnung Faktor K2 [Diagramm 5]

Umrechnung

$$\Delta p_{\parallel} = \Delta p_{\square} \times fp1 \times fp2$$

$$L_{WA} = L_{WA} + k1 \times k2$$

Beispiel

∨̈ =	$10000 \text{m}^3/\text{h}$
Größe □	800 × 800 mm
Δp _□ =	90 Pa (Diagramm 1)

Größe 800 × 1000 mm (Seitenverhältnis 0,8)

Faktor fp1 = 0,65 (Diagramm 2)

Faktor fp2 = 2 (Öffnungsverhältnis 0,72, Diagramm 4)

 $\Delta p_{\square} = 90 \text{ Pa} \times 0.65 \times 2 = 117 \text{ Pa}$

Beispiel

 \ddot{V} = 10000 m³/h Größe \square 800 × 800 mm

 $L_{wA\square} = 70 dB(A)$ (aus oberem Diagramm)

Größe 800 × 1000 mm (Seitenverhältnis 0,8)

Korrektur k1 = -5 dB(A) (Diagramm 3) Korrektur k2 = +8 dB(A) (Diagramm 5)

 $L_{WA} = 70 dB(A) - 5 dB(A) + 8 dB(A) = 73 dB(A)$

Abschätzung des Druckverlustes auf andere Bauformen mit teilweise geschlossenen Seiten (siehe Diagramme 4 und 5)

Beispiel

800 × 1000 mm, eine 100-er Seite geschlossen

Öffnungsverhältnis: offene Seite [m] / alle Seiten [m]

 $(2 \times 0.8 \text{ m}) + (1 \times 1 \text{ m}) / (2 \times 0.8 \text{ m}) + (2 \times 1 \text{ m})$

 $= 2.6 \,\mathrm{m} / 3.6 \,\mathrm{m} = 0.72$

Ausschreibungstext

BESTELLBEISPIEL

Dachhaube eckig, als Dachlüftungsaufsatz (DHE/DLA) mit eingesetzten Wetterschutzgittern aus

Stahl verzinkt

Edelstahl (1.4301)

Aluminium (3.3535)

bestehend aus

einer stabilen Gehäusekonstruktion mit profilierten Blechen oder Kastenprofilen, Gehäusedach überstehend, Dachfläche geneigt zur sicheren Regenableitung mit Abtropfkante

Fußpunkt so ausgebildet, dass eine sichere Verbindung zum Aufstellsockel hergestellt werden kann

Regenkragen vierteilig und lose mitgeliefert und nach Montage des DHE/DLA angebracht

Eingesetzte Wetterschutzgitter hinterlegt mit Vogelschutzgitter

Zusatzanforderung

DHE/DLA komplett außen lackiert RAL

Typ: DHE/DLA

Abmessungen:/...../

Höhe:

(nur bei Abweichung von der Standardhöhe angeben)

Hersteller: BerlinerLuft.

Technik GmbH

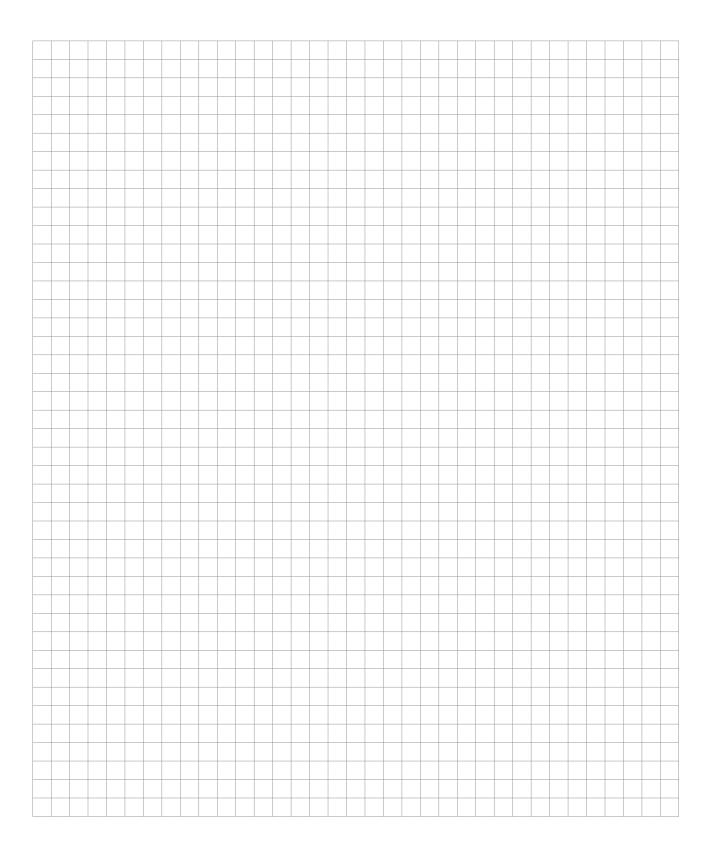
Zur Sicherung des Baustellentransports sind bei Anforderung Transportösen vorzusehen.

TYPENSCHLÜSSEL

DHE/DLA - A - 1000 × 1200 - Sv - RAL 7021 - W40

Zubehör/Sonderausstattung

Farbton nach RAL CLASSIC Tabelle


Material

Nennmaße

Bauform

Bauteilbezeichnung

Notizen

Lamellenhaube DHE/LH

ANWENDUNG

Die Lamellenhaube DHE/LH ist eine quadratische Dachhaube für die Außen- und Fortluftführung von RLT-Anlagen.

Die Haupteinsatzgebiete sind:

Außenluftansaugungen

Fortluftabführungen

Natürliche Lüftungen (z. B. Tiefgaragen, Warmbetriebe)

Lüftungen von Aufzugsschächten

Sammelabdeckungen für mehrere kleine RLT-Anlagen getrennt nach Zu- und Abluft

Um zu verhindern, dass Feuchtigkeit eingesaugt wird (Außenluftansaugung), sollte die mittlere Geschwindigkeit im freien Querschnitt 2 m/s nicht überschreiten.

Beachte

Lamellenhauben sind nicht schlagwettersicher. Bei hoher Luftfeuchte und Temperaturen < 0 °C besteht Vereisungsgefahr der Schutzgitter.

KONSTRUKTIVER AUFBAU

Die Lamellenhaube besteht aus einer Unterkonstruktion, an welcher außenliegend umlaufend die auf Gehrung geschnittenen Lamellen verdeckt befestigt sind. Das aufgesetzte Dach mit Abtropfkante erhält allseitig eine leichte Neigung zum sicheren Ablauf von Regenwasser. Die Lamellen sind mit Vogelschutzgittern hinterlegt.

Der Überstand der Lamellen beträgt Anschlussquerschnitt plus umlaufend Lamellenhöhe LH. Der Fußpunkt der Lamellenhaube erhält standardmäßig je nach Querschnitt ein Kanalanschlussprofil zur sicheren Befestigung am Sockelaufbau des Daches. Eine alternative Befestigung der Lamellenhaube ist mit einem Übersteckende möglich.

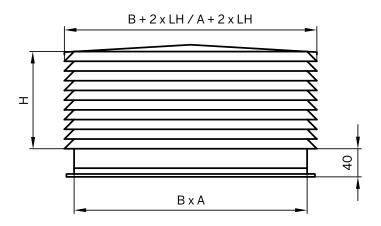
Der Anschlussquerschnitt entspricht gleich den maximalen Außenmaßen der Lamellenhaube. Die Lamellenhaube mit Übersteckende sollte nur verwendet werden, wenn eine sichere Montage auf einem Aufstellsockel möglich ist, um die Windkräfte aufzunehmen. Ein zusätzlicher Regenkragen ist auf Grund des zurückgesetzten Anschlussquerschnittes bzw. des Übersteckendes nicht erforderlich.

Lamellenhauben werden in der Standardausführung als rechteckige Hauben von 300 bis 2500 mm Kantenlänge hergestellt. Innerhalb dieser Abmessungsreihe sind auch quadratische Querschnitte auf Anfrage lieferbar.

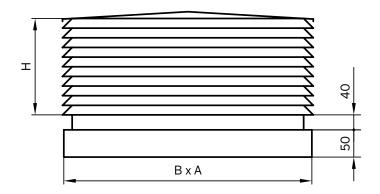
WERKSTOFFE

Materialart	Güte	Norm
Stahlblech verzinkt	DX51D + Z275 MA-C	DIN EN 10346 / 10143
VA- Bleche (Oberfläche 2B)	1.4301 (V2A)	DIN EN 10088
Aluminium	AIMg3 (3.3535; EN AW-5754)	DIN EN 485-2

Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.



Lamellenhaube DHE/LH


PRINZIPSKIZZEN UND BAUFORMEN

Bauform DHE/LH-1

Anschluss mit Kanalprofil

Bauform DHE/LH-2

Anschluss mit Übersteckende

HINWEIS

	Anschlussmaß	Haubenaußenmaß	Lamellenhöhen/-breiten
bei DHE/LH-1	B×A	B × A + 2 × LH	wahlweise 60 mm
bei DHE/LH-2	B×A	B×A	80 mm 100 mm

Lamellenhaube DHE/LH

ABMESSUNGEN UND MASSEN

Die nachfolgende Tabelle enthält Standardabmessungen für die quadratische Ausführung mit Angaben zu Bauhöhen, den freien Flächen und den Massenangaben. Werte zu anderen Abmessungen sind näherungsweise zu interpolieren bzw. nach unten stehender Formel zu berechnen.

BAUFORM DHE/LH-1

Anschlusso	querschnitt	Lamellenanzahl	Höhe	freier Querschnitt	Masse
A mm	B mm	n Stück	mm	FA m²	kg
300	300	5	300	0,18	5,4
400	400	6	360	0,32	8,7
500	500	7	420	0,50	12,6
600	600	7	420	0,60	15,1
700	700	8	480	0,84	20,2
800	800	9	540	1,12	25,9
900	900	10	600	1,44	32,4
1000	1000	11	660	1,80	47,4
1100	1100	12	720	2,20	56,9
1200	1200	12	720	2,40	62,1
1300	1300	13	780	2,86	72,1
1400	1400	14	840	3,36	84,5
1500	1500	15	900	3,90	97,0

BERECHNUNG DES FREIEN QUERSCHNITTS (FA) IN M² BEI BAUFORM

DHE/LH-1 $F_A = 2 \times (A + B) \times (n - 2) \times 0.05$

DHE/LH-2 $F_A = 2 \times (A + B - 0.2) \times (n - 2) \times 0.05$

A/B Anschlussquerschnitte in mm

n Lamellenanzahl

Hinweis: Die dargestellten Abmessungen und Massen sind lediglich Richtwerte. Verbindliche technische Parameter bei Auslegung auf Anfrage über BerlinerLuft.

Geneigte Lamellenhaube DHE/LH-1 verzinkt auf isoliertem Dachsockel für Schrägdach, Typ DHE/DS

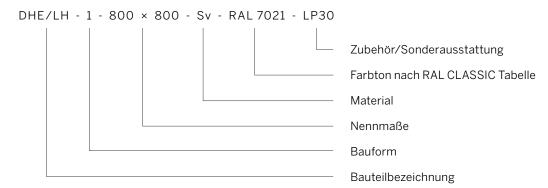
Ausschreibungstext

BESTELLBEISPIEL

Dachhaube eckig, als Lamellenhaube aus

Stahl verzinkt

Edelstahl (1.4301)


Aluminium (3.3535)

bestehend aus einer stabilen Unterkonstruktion umlaufend angebrachten, auf Gehrung geschnittenen, verdeckt befestigten Lamellen mit hinterlegtem Vogelschutzgitter. Fußpunkt ausgestattet wahlweise mit Kanalanschlussprofil oder Modulkantung bei Typ DHE/LH-1 oder mit Übersteckende bei Typ DHE/LH-2.

Hersteller: BerlinerLuft.

Technik GmbH

TYPENSCHLÜSSEL

Deflektorhaube strömungsoptimiert DHE/DFH-E-Eco

PRODUKTBESCHREIBUNG

Die Deflektorhaube ist die gebräuchlichste Dachhaube zur Fortführung verbrauchter Luft im Dachbereich. Der Luftaustritt erfolgt senkrecht nach oben mit großer Wurfweite. Dadurch wird schadstoff- oder geruchsbelastete Fortluft vom Gebäude bzw. den Außenluft-Ansaugstellen ferngehalten. Zur Erzielung ausreichender Wurfweite werden Strömungsgeschwindigkeiten, bezogen auf den Anströmquerschnitt, von 6 – 8 m/s empfohlen.

Die Bauform der neuen Deflektorhaube DHE/DFH-E-Eco verbindet ästhetisches Design mit reduzierten Betriebskosten und einem verminderten Strömungsgeräusch.

KONSTRUKTIVER AUFBAU

Im Gegensatz zu Deflektorhauben herkömmlicher Bauart wird bei der strömungsoptimierten Variante DHE/DFH-E-Eco die Luft von der Regenauffangeinrichtung nicht in vier Richtungen als Querströmung abgelenkt, sondern seitlich über nahezu parallele Schächte geführt. Anstelle des flachen Auffangtrichters befindet sich eine V-förmig ausgeführte Auffangrinne, die an der tiefsten Stelle bis an die Innenseiten des Gehäuses reicht. Das Niederschlagswasser wird an der Innenseite des Gehäuses durch einen umlaufenden Schlitz abgeleitet. Dadurch entfällt das verschmutzungsanfällige Ablaufrohr.

HINWEIS

Eine absolute Sicherheit gegen, in die Luftleitung eindrigendes Niederschlagswasser bei extremen Wettersituationen ist bei keiner Dachhaube gewährleistet. Zum sicheren Auffangen des Niederschlagwassers wird empfohlen, bauseits entsprechende Vorkehrungen zu treffen. Die Deflektorhaube besteht im Wesentlichen aus einem Gehäuse in Form zweier gegeneinander angeordneter Pyramidenstümpfe, dem Fußteil und der Auffangeinrichtung für Niederschlag. Die Auffangeinrichtung ist konstruktiv so gestaltet, dass der Anströmquerschnitt vollständig überdeckt ist und somit das Eindringen von Niederschlag weitestgehend vermieden wird.

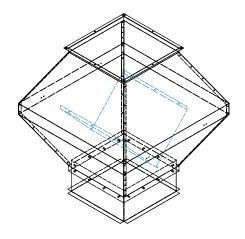
Das Fußteil ist mit einem Anschlussrahmen zur sicheren Befestigung am Aufstellsockel (siehe Abschnitt Dachdurchführungen/Dachsockel) versehen. Flanschverbindung und ggf. eine wärmedämmende Ummantelung sind durch einen Regenkragen zu schützen.

Optional sind Transportösen zur Kranmontage erhältlich. Ebenso auf Wunsch erfolgt eine Überprüfung der statischen Erfordernisse (z. B. Windlasten).

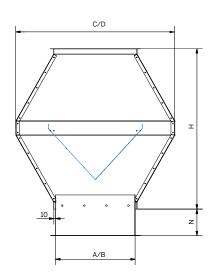
WERKSTOFFE

Materialart	Güte	Norm
Stahlblech verzinkt	DX51D + Z275 MA-C	DIN EN 10346 / 10143
VA- Bleche (Oberfläche 2B)	1.4301 (V2A)	DIN EN 10088
Aluminium	AIMg3 (3.3535; EN AW-5754)	DIN EN 485-2

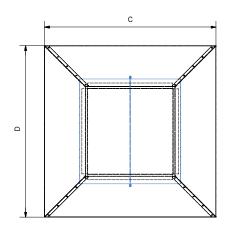
Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.



- 1 | Deflektorhaube DHE/DFH-E-Eco, verzinkt
- 2 | Deflektorhaube DHE/DFH-E-Eco, Edelstahl V2A


LIEFERBARE GRÖSSEN

Quadratische und rechteckige Standard-Deflektorhauben werden bis zu einem Anschlussmaß von 1450×1450 mm komplett montiert gefertigt. In diesem Abmessungsbereich kann jeder erforderliche Querschnitt, quadratisch oder rechteckig, hergestellt werden. Bei Anschlussmaßen größer 750×750 mm werden die beiden Pyramidenstümpfe geteilt, mit Flanschverbindung ausgeführt.


Größere Hauben sind Sonderkonstruktionen, die Versteifungen und andere Blechteilungen erfordern. Diese werden aus Transportgründen standardmäßig in Einzelteilen geliefert.

PRINZIPSKIZZE

Deflektorhaube Typ DHE/DFH-E-Eco verzinkt auf isoliertem Dachsockel, Typ DS mit leichter Neigung für Schrägdach

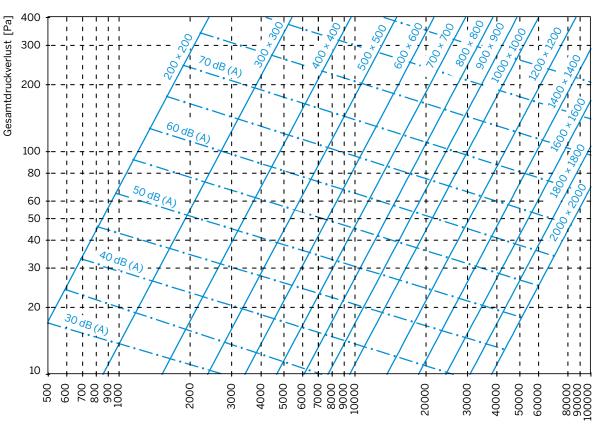
Für A und B: 300 – 750 mm ohne Kranösen

Α	=	Kleines Anschlussmaß
В	=	Großes Anschlussmaß
N	=	150 mm (Standardfuß-
höhe –		
		and the section of the land

optional andere Höhe

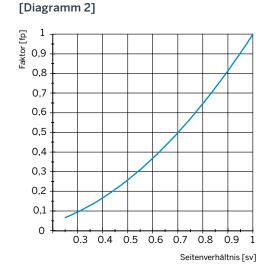
Für A und B: > 750 mm mit Kranösen

С	=	2 × A + 65 mm
D	=	$A \times B + 65 mm$
Н	=	2 × A

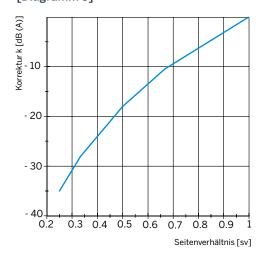

 $H_{ges} = H + N + 10 \text{ mm}$

Deflektorhaube strömungsoptimiert DHE/DFH-E-Eco

DRUCKVERLUST/STRÖMUNGSGERÄUSCH


[Diagramm 1]

Hinweis: Schall-Auslegung mit Software AKUSWIN® ab Version 4.0


Volumenstrom [m³/h]

DRUCKVERLUST

SCHALLLEISTUNG

[Diagramm 3]

UMRECHNUNG AUF NICHT QUADRATISCHE DEFLEKTORHAUBEN

Druckverlust

 $\Delta p_{\parallel} = \Delta p_{\parallel} \times fp1$

Umrechnungsbeispiel

10.000 m³/h <u>600</u> × 600 mm Größe □:

85 Pa (siehe Diagramm 1) $\Delta p_{\square} =$

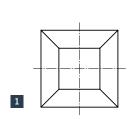
 $600 \times 800 \text{ mm}$ (Seitenverhältnis 1: 1,5 = 0.75) Größe:

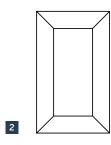
Faktor fp1 = 0,58 (siehe Diagramm 2) 85 Pa × 0,58 = 49 Pa $\Delta p_{\Pi} =$

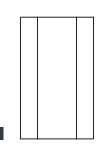
Schallleistung

 $L_{WA} = L_{WA} + k$

Umrechnungsbeispiel


٧ = 10.000 m³/h Größe □: $600 \times 600 \, mm$


64 dB (A) (siehe Diagramm 1) $L_{\text{wA}} =$


 $600 \times 800 \text{ mm}$ (Seitenverhältnis 1:1,5 = 0.75) Größe:

Korrektur k = -8dB (A) (siehe Diagramm 3) 64dB(A) - 8dB(A) = 56dB(A) $L_{\text{wA}\Pi} =$

BAUFORMEN

- 1 | E1 quadratisch Standard
- 2 | E2 rechteckig Standard
- 3 | E3 rechteckig; zweiseitig ausladend

Ausschreibungstext

BESTELLBEISPIEL

Deflektorhaube strömungsoptimiert DHE/DFH-E-Eco, quadratisch/rechteckig in gefalzter Ausführung (wahlweise geschweißt) aus

Stahl verzinkt

Edelstahl (1.4301)

Aluminium (AIMg3)

Gehäuse bestehend aus:

zwei gegeneinander angeordneten Pyramidenstümpfen

innenliegender spitzwinkliger Auffangrinne, deren Außenseiten mit der Gehäusewandung etwa parallele Strömungskanäle bilden, Wasserableitung über einen umlaufenden Spalt

Vogelschutzgitter an der Luftaustrittsöffnung

Fußstück mit Befestigungsflansch zur sicheren Befestigung der Deflektorhaube auf dem Aufstellsockel

Regenkragen (vierteilig) zur nachträglichen Montage am Aufstellort lose mitgeliefert.

Zusatzanforderung

komplett außen lackiert mit Farbton nach RAL

Typ: DHE/DFH-E-Eco/

(Anschlussquerschnitt $A \times B$)

Hersteller: BerlinerLuft.

Technik GmbH

TYPENSCHLÜSSEL

DHE/DFH-E-Eco - E2 - 1000 × 1200 - Sv - RAL 7021 - W40

Anschlussverbindung/Zubehör

Farbton nach RAL CLASSIC Tabelle

Material

Nennmaße/Anschlussmaß

Bauform Deflektorhaube Eco

E1 - quadratisch

E2 - rechteckig

E3 - rechteckig, zweiseitig ausladend

Bauteilbezeichnung

Horizontaler Regenabscheider DHE/HRA Dachhaube eckig

PRODUKTBESCHREIBUNG

Der horizontale Regenabscheider ist als eckige Dachhaube vorzugsweise für Fortluft konzipiert, jedoch auch für Außenluft einsetzbar. Die DHE/HRA ergänzt das Portfolio der Außenund Fortlufttechnik zwischen Schrägdachwetterschutzgitter und Deflektorhaube. Der Luftaustritt erfolgt senkrecht nach oben. Die Konstruktion ist als Kanal- oder Schachtabschluss für den horizontalen Einbau geeignet und fügt sich, aufgrund seiner geringen Bauhöhe, harmonisch in die Gebäudesilhouette ein. Seine obere Öffnung ist mit einem strömungsgünstigen Schutzgitter versehen, um den Eintritt von Verunreinigungen zu verhindern. Niederschläge werden durch innenliegende Lamellen aufgefangen und seitlich abgeleitet. Zur Gewährleistung einer optimalen Funktion werden Anströmgeschwindigkeiten, bezogen auf den Anschlussquerschnitt von 5 – 8 m/s empfohlen.

Die Anordnung der Lamellen im Inneren der Haube verringert Strömungsrauschen und reduziert die Betriebskosten durch einen geringen Druckverlust.

MONTAGEHINWEISE

Die eckige Dachhaube DHE/HRA hat einen Mindestwasserabscheidegrad von 94 %. Eine absolute Sicherheit gegen in die Luftleitung eindringendes Niederschlagswasser bei extremen Wettersituationen ist grundsätzlich bei keiner Dachhaube gewährleistet und kann nicht garantiert werden.

Das angeschlossene Luftleitungssystem ist gemäß VDI 6022 und DIN 18379 mit entsprechenden Vorrichtungen zur Ableitung von Regen, Schnee und Kondensat zu versehen.

Niederschläge werden durch innenliegende Lamellen und Rinnen aufgefangen und seitlich durch die Gehäusewand nach außen geführt. Das austretende Niederschlagswasser kann auf die Dachhaut laufen (Aufsatzmontage) oder optional durch eine Anschlussverlängerung über ein bauseits verlegtes System an die Gebäudeentwässerung (Einsatzmontage) angeschlossen werden.

Für die Anordnung und den Abstand der DHE/HRA ist in der DIN EN 13779 der informative Anhang A zu beachten. Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.

Horizontaler Regenabscheider DHE/HRA

KONSTRUKTIVER AUFBAU

Der horizontale Regenabscheider besteht im Wesentlichen aus einem rechteckigen Gehäuse mit innenliegenden Lamellen und Rinnen zur Wasserableitung. Das Fußteil ist mit einem Anschlussrahmen zur sicheren Befestigung am Kanal oder an der Dachdurchführung / Dachsockel versehen. Dieser Anschlussrahmen ist bei Durchsteck- oder Aufsatzmontage durch einen umlaufenden Regenkragen zu schützen und mit einem geeigneten Dichtmittel / Dichtung abzudichten. Der obere Anschlussrahmen kann individuell so angepasst

werden, dass der DHE/HRA bündig mit dem Dachsockel endet. Optional sind Transportösen zur Kranmontage erhältlich. Zur Aufrechterhaltung der Lamellenstabilität werden Breiten bis 1000 mm gefertigt.

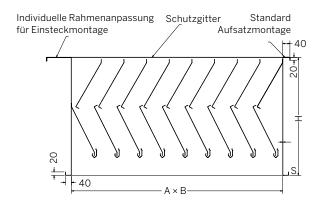
KORROSIONSSCHUTZKLASSE

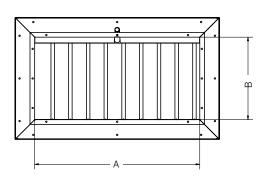
In verzinkter Ausführung wird die Korrosionsschutzklasse C2 (80 µm) nach DIN EN ISO 12499 erreicht.

WERKSTOFFE

Materialart	Güte	Norm
Stahlblech verzinkt	DX51D + Z275 MA-C	DIN EN 10346 / 10143
VA- Bleche (Oberfläche 2B)	1.4301 (V2A)	DIN EN 10088
Aluminium	AIMg3	DIN EN 485-2

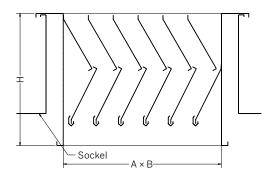
Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.

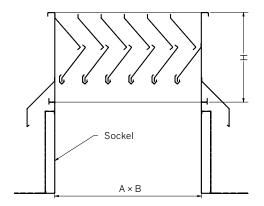



LIEFERBARE GRÖSSEN

Quadratische und rechteckige horizontale Regenabscheider werden bis zu einem Anschlussmaß von 2500 \times 1000 mm komplett montiert gefertigt. Dabei stehen die Bauhöhen 500 mm und 680 mm zur Verfügung. Ab einem Anschluss von 500 \times 500 mm kann jeder erforderliche rechteckige oder quadratische Querschnitt innerhalb der Abmessungsgrenzen hergestellt werden.

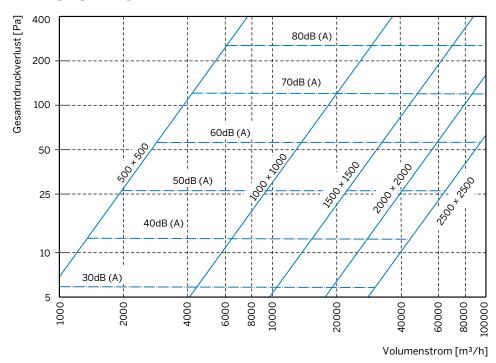
In der Breite und Länge lassen sich mehrere Regenabscheider Rücken-an-Rücken zusammen schrauben und auf einem gemeinsamen Rahmen oder Sockel montieren. Somit können größere Anschlussquerschnitte erreicht werden.


PRINZIPSKIZZE

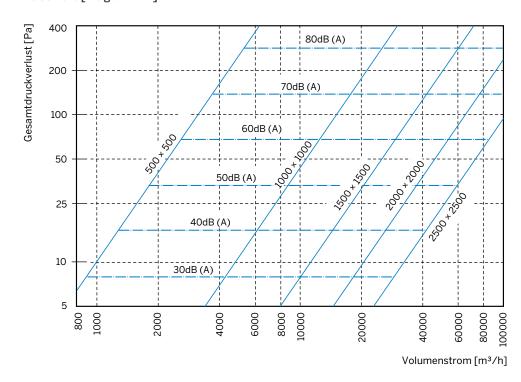


BAUFORMEN

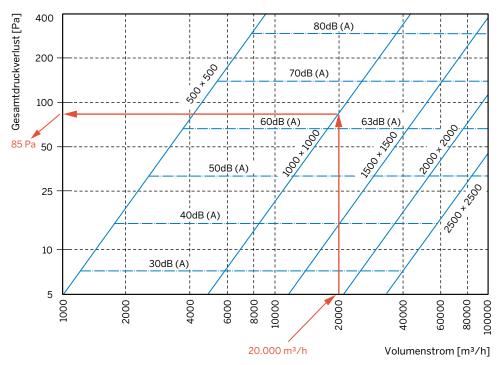
Einsatzmontage


Aufsatz- und Durchsteckmontage

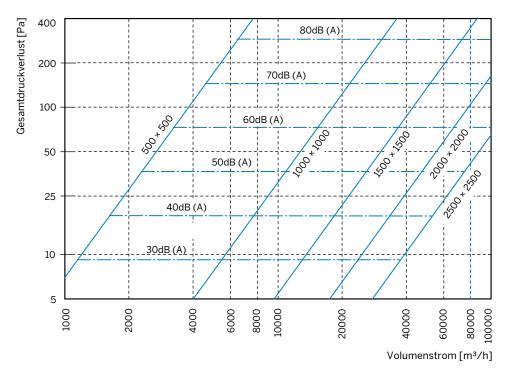
Horizontaler Regenabscheider DHE/HRA


DRUCKVERLUST / STRÖMUNGSGERÄUSCH DHE/HRA-500-FL

Fortluft [Diagramm 1]

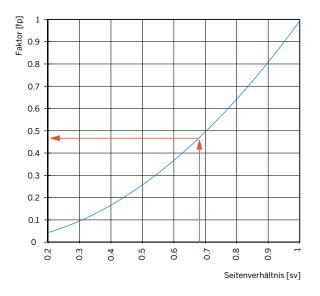

DRUCKVERLUST / STRÖMUNGSGERÄUSCH DHE/HRA-500-AL

Außenluft [Diagramm 2]

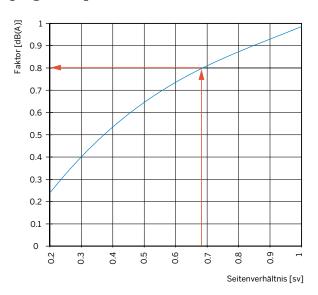

DRUCKVERLUST / STRÖMUNGSGERÄUSCH DHE/HRA-680-FL

Fortluft [Diagramm 3]

DRUCKVERLUST / STRÖMUNGSGERÄUSCH DHE/HRA-680-AL


Außenluft [Diagramm 4]

Horizontaler Regenabscheider DHE/HRA


DRUCKVERLUST

Umrechnung auf nicht quadratische Querschnitte [Diagramm 5]

SCHALLLEISTUNG

Umrechnung auf nicht quadratische Querschnitte [Diagramm 6]

BEISPIEL DHE/HRA-680-FL

Umrechnung auf nicht quadratische Querschnitte Druckverlust

$$\Delta \mathbf{p}_{\square} = \Delta \mathbf{p}_{\square} \times \mathbf{fp1}$$

Beispiel

 \ddot{V} = 20 000 m³/h Größe \square : 1000 × 1000 mm

 Δp_{\square} = 85 Pa (siehe Diagramm 3)

Größe: $1000 \times 1500 \text{ mm}$ (Seitenverhältnis 2 : 3 = 0.66)

Faktor fp = 0.46 (siehe Diagramm 5) Δp_{\parallel} = 85 Pa × 0.46 = 39 Pa

Schallleistung

$$L_{WA} = L_{WA} \times k$$

Beispiel

 $\Delta p_{\Box} = 63 \, dB(A) \, (siehe \, Diagramm \, 3)$

Größe: 1000×1500 mm (Seitenverhältnis 2 : 3 = 0.66)

Faktor k = $0.8 \, dB(A)$ (siehe Diagramm 6) $L_{wA||}$ = $63 dB(A) \times 0.8 = 50 \, dB(A)$

Ausschreibungstext

Horizontaler Regenabscheider quadratisch/ rechteckig bestehend aus Gehäuse mit innenliegenden Lamellen und Auffangrinnen, für Außen- oder Fortluftführung, in Aufsatz- (AM) oder Einsatzmontage (EM).

Maximale Modulbreite 1000 mm, max. Modullänge 2500 mm, in Aluminiumausführung max. Modullänge 1500 mm.

Aufsatzmontage mit oben liegendem Vogelschutzgitter und unterem Verbindungsflansch zum Anschluss an Kanal, Dachsockel und Dachdurchführungen mit Lastaufnahme der BerlinerLuft., oder auf bauseitigem Dachsockel mit Individualflansch-Ausbildung. Wasserableitung auf das Dach.

Einsatzmontage mit oberem 30 bis 230 mm Befestigungsflansch wählbar, Rückkantung und Vogelschutzgitter. Wasserableitung (Muffenanschluss mind. 1") nach innen für bauseitigen Anschluss.

Bei Aufsatzmontage optional mit separat erhältlichem Regenkragen (RK) zur Flanschüberdeckung vierteilig und lose als Zubehör lieferbar.

Mehrere Module auf gemeinsamen Rahmen für große Luftmengen auf Anfrage.

Für Sicherung des Baustellentransportes optional mit Kranösen (KÖ) als Zubehör.

Material:

Stahl verzinkt

Edelstahl (Oberfläche 2B)

Aluminium (Oberfläche naturfarben) AlMg3

Technische Angaben:

Material:
Montageform:
Breite-kurze Seite × Länge (mm):
Höhe (mm): 500/ 680 mm (wählbar):
Luftmenge (m³/h):
Luftrichtung: Außenluft- oder Fortluft (wählbar):
Druckverlust (Pa):
Freie Fläche (m²):
Schallleistungspegel [dB(A)]:
Gewicht (kg):

Ohne statischen Nachweis, optional im Auftragsfall als Zusatzleistung möglich.

Außen (Standard) und/oder innen (wählbar):

Beschichtung:

RAL-Farbtöne classic (wählbar):
Standard Korrosivitätskategorie C2 (DIN EN ISO 12944):
Ausführung Nass (Standard) oder
Pulver (mittlere Schichtdicke 80µm Standard)

Hersteller: BerlinerLuft.
Technik GmbH

Horizontaler Regenabscheider DHE/HRA

BESTELLBEISPIEL

Horizontaler Regenabscheider, Aufsatzmontage

Größe: Breite 1000 × Länge 2000 × Höhe 680 in mm

Stahl verzinkt

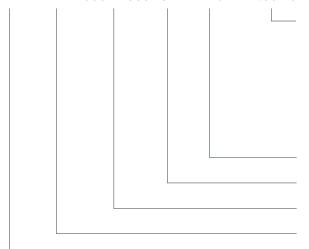
Beschichtung RAL-Farbton 9006

Flansch unten 100 mm

für Außenluftansaugung

Zusatzanforderung

Art: Regenabscheider horizontal


Typ: DHE/HRA

Hersteller: BerlinerLuft.

Technik GmbH

TYPENSCHLÜSSEL

DHE/HRA - AM - 2000 × 2000 - Sv - RAL 7021 - Mo30/10

Anschlussrahmen – Rahmenmöglichkeiten:

- Anschlussrahmen Standard: LP 20 bis 1000 mm KL LP 30 ab 1001 bis 2000 mm KL LP 40 ab 2001 mm KL
- 2. Modulkantung Mo 30/10, Mo 30/15, Mo 40/10, Mo 40/20, Mo 50/25, Mo 60/30, Mo 80/40

Farbton nach RAL CLASSIC Tabelle

Material

Abmessung a × b

Bauform (AM = Aufsatzmontage, EM = Einsatzmontage)

Bauteilbezeichnung

Außenlufthaube DHE/ALH

ANWENDUNG

Die Außenlufthaube DHE/ALH ist eine spezielle Form von Dachhauben, die ausschließlich für die Außenluftansaugung vorgesehen ist. Der Einsatz der Dachhaube erfolgt vorwiegend für die Ansaugung größerer Außenluftmengen für Industrie-Lüftungsanlagen. Durch die spezielle Gestaltung der Haubenkonstruktion ist eine hohe Sicherheit gegen Schlagregen gegeben.

Bei Aufstellung der Außenlufthaube sollte, aufgrund der Postition der Luftansaugung, auf einen ausreichenden Abstand zur Dachfläche eingehalten werden, um im Winter das Ansaugen von Schnee zu verhindern.

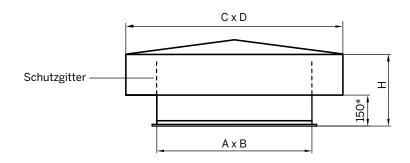
KONSTRUKTIVER AUFBAU

Die Konstruktion der Außenlufthaube erfordert aufgrund ihrer Form und ihrer Funktion als Luftansaugelement im Dachbereich eine stabile Unterkonstruktion, welche in Abhängigkeit der Nenngröße gestaltet wird. Die Massen und die Windkräfte der relativ großen Haubenflächen müssen sicher in die Unterkonstruktion eingeleitet werden. Der Anschlussstutzen wird mit einem stabilen Befestigungsflansch zur Montage auf dem Aufstellsockel versehen. Die Luftansaugung erfolgt über den horizontalen Überstand des Haubendaches. Die Schutzgitterelemente sind unterhalb des Haubendaches im Kanal angeordnet. Als Sonderanfertigung können die Schutzgitterelemente in der Horizontalen des Haubendaches befestigt werden.

WERKSTOFFE

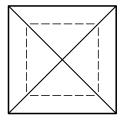
Materialart	Güte	Norm
Stahlblech verzinkt	DX51D + Z275 MA-C	DIN EN 10346 / 10143
VA- Bleche (Oberfläche 2B)	1.4301 (V2A)	DIN EN 10088
Aluminium	AIMg3 (3.3535; EN AW-5754)	DIN EN 485-2

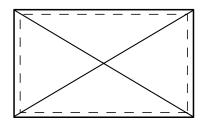
Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.


Außenlufthaube DHE/ALH

LIEFERBARE GRÖSSEN

Außenlufthauben werden ab einem Nennmaß (Anschlussmaß) von 500×500 bis 2000×2000 mm als Standardlösung gefertigt. Innerhalb dieser Maße sind alle quadratischen und rechteckigen Querschnitte mit einem Maßsprung von 100 mm möglich.


Größere Abmessungen bis zu einer maximalen Abmessung von 2000 × 4000 mm sind als Sonderlösungen in Abstimmung mit dem Hersteller möglich. Hierbei werden die Belange Ausführung, Montage und Transport in die Ausführungsunterlagen eingearbeitet.


PRINZIPSKIZZE

^{*} Standardfußhöhe – andere Höhe möglich

BAUFORMEN

- 1 | E1 quadratisch
- 2 | E2 rechteckig

Ausschreibungstext

BESTELLBEISPIEL

Außenlufthaube DHE/ALH in stabiler, selbsttragender Konstruktion. Unterkonstruktion nach statischen Erfordernissen gepunktet oder geschweißt.

Stahl verzinkt

Edelstahl (1.4301)

Aluminium (AlMg3 - 3.3535)

Ausführung wasserdicht. Notwendige Abdichtungen mit einem silikonfreien, UV- beständigen Dichtmaterial.

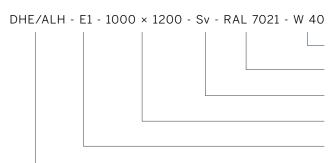
Ansaugöffnungen abgedeckt mit Vogelschutzgitter fest

Fußpunkt der Außenlufthaube mit einem stabilen Anschlussflansch passend zum Aufstellsockel ausgeführt. Regenkragen viergeteilt und lose beigestellt zur nachträglichen Befestigung an der DHE/ALH. Für Krantransport mit entsprechender Anzahl Transportösen in Abhängigkeit der NG ausgerüstet.

Zusatzanforderung

 $Schutzgitter \"{u}ber Scharnier verbindung abklappbar ausf\"{u}hren$

ALH außen komplett lackiert in Farbton RAL


Typ: DHE/ALH

Nenngröße:/...../

Hersteller: BerlinerLuft.

Technik GmbH

TYPENSCHLÜSSEL

Anschlussverbindung/Zubehör

Farbton nach RAL CLASSIC Tabelle

Material

Anschlussquerschnitt

Bauform A

Bauteilbezeichnung

Wetterhaube DHE/WH

PRODUKTBESCHREIBUNG

Ansaug-/Ausblaskanalstück als gefalztes Blechgehäuse mit zusätzlichen Flächenversteifungen (baugrößenabhängig)

Wetterhauben sind eine einfache Alternative für die Außenluftansaugung oder den Fortluftausblas in der horizontalen Luftleitungsführung. In der Regel werden sie bei der Durchdringung des Außenmauerwerks eingesetzt. Darüber hinaus können sie auch als Kanalabschluß innerhalb oder außerhalb von Gebäuden eingesetzt werden.

Die Luftansauggeschwindigkeit sollte 5,0 m/s im freien Querschnitt nicht überschreiten.

Hinweis

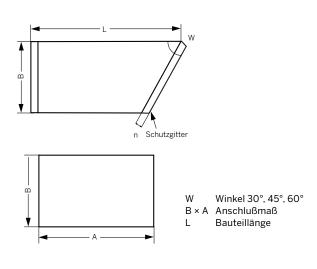
Wetterhauben sind nur bedingt schlagwettersicher. Bei hoher Luftfeuchte und Temperaturen < 0 °C besteht Vereisungsgefahr der Schutzgitter.

KONSTRUKTIVER AUFBAU

Wetterhauben bestehen im Wesentlichen aus einem stabilen gefalzten Blechgehäuse welches, je nach Baugröße, zusätzliche Flächenversteifungen nach herstellerinternen konstruktiven Erfordernissen enthält. Zur Vermeidung des direkten Einfalls von Niederschlägen hat die Wetterhaube einen wählbaren vorgezogenen Anschnitt von 30°, 45° oder 60°. Zum Schutz gegen grobe Verunreinigungen erhalten alle Wetterhauben demontierbare Vogelschutzgitter. Die Herstellung der Wetterhaube ist über die Mindestbauteillänge L_{\min} begrenzt. Die maximale Baulänge beträgt 1450 mm.

WERKSTOFFE

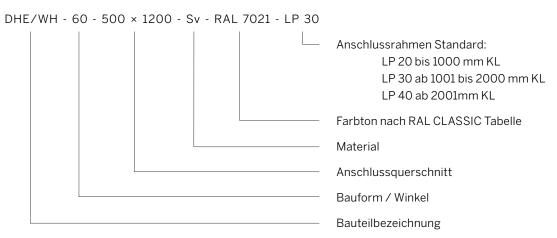
Materialart	Güte	Norm
Stahlblech verzinkt	DX51D + Z275 MA-C	DIN EN 10346 / 10143
VA- Bleche (Oberfläche 2B)	1.4301 (V2A)	DIN EN 10088
Aluminium	AIMg3 (3.3535; EN AW-5754)	DIN EN 485-2


Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.

LIEFERBARE GRÖSSEN

Wetterhauben eckig werden ab einem Nennmaß (Anschlußquerschnitt) von 200 × 200 bis 2000 × 2000 mm als Standardausführung geliefert. Innerhalb dieser Maßreihe sind alle quadratischen oder rechteckigen Abmessungen möglich. Größere Abmessungen sind nach genauer Beschreibung der Anforderungen als Sonderanfertigung lieferbar.

PRINZIPSKIZZE


Ausschreibungstext

BESTELLBEISPIEL

Wetterhaube eckig bestehend aus einem stabilen Blechgehäuse.

Winkel 30°, 45°, 60°	einseitig mit LP Rahmenverbindung zum Kanalanschluss
Stahl verzinkt	Falze UV-beständig abgedichtet
Edelstahl 1.4301	Nenngröße B × A
Aluminium AIMg3 - 3.3535	Gesamtlänge L
Vogelschutzgitter am Kanalgehäuse befestigt	Winkel w°
Ansaugöffnung mit Regenabtropfkante unmittelbar mit dem	Hersteller: BerlinerLuft.
Gehäuse verbunden	Technik GmbH

TYPENSCHLÜSSEL

Ansaug- und Ausblasbogen DHE/ASB; DHE/ABB

PRODUKTBESCHREIBUNG

DHE/ASB 135°

Dachhaube eckig, als Ansaugbogen 135°, bestehend aus einem stabilen Blechgehause.

DHE/ABB 90°

Dachhaube eckig, als Ausblasbogen 90°, bestehend aus einem stabilen Blechgehäuse mit 30° Bogenanschnitt

ANWENDUNG

Ansaug- oder Ausblasbögen (DHE/ASB bzw. DHE/ABB) sind eine einfache Alternative zu Dachhauben für die Außenluftansaugung oder den Fortluftausblas. Je nach Anwendungserfordernis kommen einseitig oder doppelseitige Bögen zum Einsatz. Für die Außenluftansaugung werden hauptsächlich 135°-Bögen und für den Fortluftausblas 90°-Bögen verwendet. Die Luftansauggeschwindigkeit sollte 5,0 m/s im freien Querschnitt nicht überschreiten.

Hinweis

Ausblasbögen sind nur bedingt schlagwettersicher. Bei hoher Luftfeuchte und Temperaturen < 0 °C besteht Vereisungsgefahr der Schutzgitter.

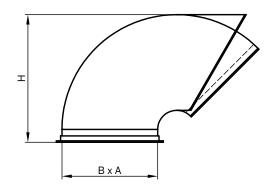
KONSTRUKTIVER AUFBAU

Ansaug- oder Ausblasbögen bestehen im Wesentlichen aus einem stabilen gefalzten Blechgehäuse, welches je nach Baugröße zusätzliche Flächenversteifungen nach herstellerinternem konstruktivem Erfordernis erhält. Zur Vermeidung des direkten Einfalls von Niederschlägen hat der Bogen einen wählbaren vorgezogenen Bogenanschnitt von 30° oder 45°. Zum Schutz gegen grobe Verunreinigungen erhalten alle Ausblasbögen demontierbare Vogelschutzgitter. Ausblasbögen werden in Anlehnung an DIN EN 1505 mit Leitblechen versehen.

Der Innenradius beträgt 100 mm, die Anschlussseite wird in der Standardausführung um 200 mm verlängert. Der Fußpunkt des Bogens wird entsprechend den Anforderungen an die örtlichen Befestigungsmöglichkeiten (Dachsockel) gestaltet. Für die Überdeckung des Befestigungspunktes steht ein loser Regenkragen zur Anbringung nach der Montage zur Verfügung. Alle Falze werden UV-beständig abgedichtet. In Abhängigkeit von der Baugröße bzw. auf Anforderung erhalten Ansaug- und Ausblasbögen Lastpunktverstärkungen mit Transportösen.

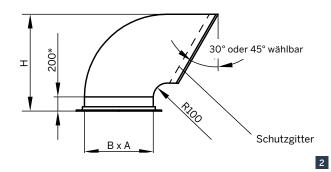

WERKSTOFFE

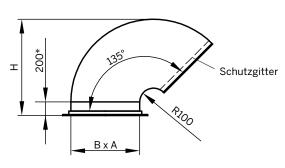
Materialart	Güte	Norm
Stahlblech verzinkt	DX51D + Z275 MA-C	DIN EN 10346 / 10143
VA- Bleche (Oberfläche 2B)	1.4301 (V2A)	DIN EN 10088
Aluminium	AIMg3 (3.3535; EN AW-5754)	DIN EN 485-2

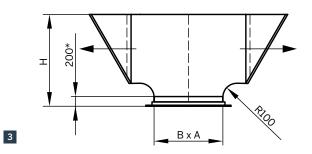

Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.

LIEFERBARE GRÖSSEN

Ausblasbögen eckig werden ab einem Nennmaß (Anschlussquerschnitt) von 200 × 200 bis 2000 × 2000 mm als Standardausführung geliefert. Innerhalb dieser Maßreihe sind alle quadratischen oder rechteckigen Abmessungen möglich. Größere Abmessungen sind nach genauer Beschreibung der Anforderungen als Sonderanfertigung lieferbar.




PRINZIPSKIZZE




BAUFORMEN

1

* Standardfußhöhe – andere Höhe möglich

- 1 | Ausblasbogen DHE/ABB 90°
- 2 | Ansaugbogen DHE/ASB 135°
- 3 | Doppel-Ausblasbogen DHE/ABB-D 90°
- 4 | Doppel-Ansaugbogen DHE/ASB-D 135°

Ausschreibungstext

BESTELLBEISPIEL

Dachhaube eckig (als Ansaugbogen 135° bestehend aus einem stabilen Blechgehäuse / als Ausblasbogen 90° bestehend aus einem stabilen Blechgehäuse mit 30° Bogenanschnitt) aus

Stahl verzinkt

Edelstahl 1.4301

Aluminium AlMg3 - 3.3535

Vogelschutzgitter demontierbar am Gehäuse befestigt.

Ansaugöffnung mit Regenabtropfkante unmittelbar mit dem Gehäuse fest verbunden.

Fußpunkt so ausgebildet, dass eine stabile Befestigung am Aufstellsockel möglich ist.

Befestigungsstelle zwischen Fuß und Sockel durch einen Regenkragen (vierteilig, lose Beistellung) abgedeckt.

Falze UV-beständig abgedichtet.

Zusatzanforderung

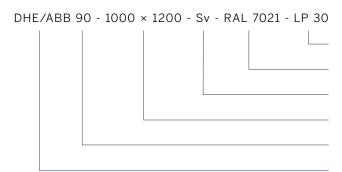
Bogen außen komplett lackiert in Farbton RAL

Typ: DHE/ABB 90° einseitig 90° symmetrisch

DHE/ABB 135° einseitig 135° symmetrisch

DHE/ABB-D 90° doppelseitig 90°

nach Zeichnung


DHE/ABB-D135° doppelseitig135°

nach Zeichnung

Nenngröße:/...../

Hersteller: BerlinerLuft. Technik GmbH

TYPENSCHLÜSSEL

Anschlussverbindung/Zubehör

Farbton nach RAL CLASSIC Tabelle

Material

Anschlussquerschnitt

Bauform Ausblasbogen 90°

Bauteilbezeichnung

Sonderbauwerke

ANWENDUNG

Für die Luftansaugung und den Luftausblas über Dach steht ein umfangreiches Sortiment von eckigen und runden Dachhauben als Sonderlösungen für spezielle Anforderungen zur Verfügung.

Sonderlösungen für:

hohe Luftmengen reduzierte Bauhöhen flache, im Dach integrierte Zu- und Abluftelemente spezielle Gestaltungsanforderungen kombinierte Zu- und Abluftelemente hohe Sicherheitsanforderungen gegen eindringende Feuchtigkeit	
flache, im Dach integrierte Zu- und Abluftelemente spezielle Gestaltungsanforderungen kombinierte Zu- und Abluftelemente hohe Sicherheitsanforderungen gegen eindringende	hohe Luftmengen
spezielle Gestaltungsanforderungen kombinierte Zu- und Abluftelemente hohe Sicherheitsanforderungen gegen eindringende	reduzierte Bauhöhen
kombinierte Zu- und Abluftelemente hohe Sicherheitsanforderungen gegen eindringende	flache, im Dach integrierte Zu- und Abluftelemente
hohe Sicherheitsanforderungen gegen eindringende	spezielle Gestaltungsanforderungen
	kombinierte Zu- und Abluftelemente

erhöhte Sicherheitsanforderungen (Einbruchssicherheit)

KONSTRUKTIVER AUFBAU

Die Sonderkonstruktionen als Ansaug- oder Ausblasbauwerke werden in der Regel in einer stabilen geschweißten Bauweise ausgeführt. Bei Bedarf wird eine tragende Unterkonstruktion vorgesehen, welche mit Blechen und den speziellen Luftdurchtrittselementen beplankt wird. Je nach konstruktiver Gestaltung wird bei einigen Lösungen das anfallende Regenwasser im Gebäude entsorgt.

Zur Sicherung des Korrosionsschutzes wird Stahlblech verzinkt eingesetzt.

Alle Schweißnähte werden durch eine fachgerechte Nachbehandlung gegen Korrosion gesichert. Zusätzlich kann auf Anforderung jede Baugruppe komplett lackiert ausgeführt werden. Alternative Materialien sind Edelstahl oder Aluminium.

WERKSTOFFE

Materialart	Güte	Norm
Stahlblech verzinkt	DX51D + Z275 MA-C	DIN EN 10346 / 10143
VA- Bleche (Oberfläche 2B)	1.4301 (V2A)	DIN EN 10088
Aluminium	AIMg3 (3.3535; EN AW-5754)	DIN EN 485-2

Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.

BAUFORMEN - ANSAUGBAUWERKE

Ansaugbauwerk mit Jalousieklappen

Das Ansaugbauwerk mit Jalousieklappen ist eine stabile Gehäusekonstruktion mit elektrisch gesteuerten mehrteiligen Jalousieklappen zur Vermeidung von Kaltlufteinfall und vorgesetzten mehrteiligen Wetterschutzgittern.

Mögliche Zusatzanforderungen:

Begehbarkeit
Isolierung Dachzone
Mehrkammersystem
Blitzschutzklemme

Kranösen

Ansaugbauwerk mit Tropfenabscheider

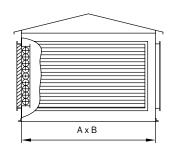
Das Ansaugbauwerk mit Tropfenabscheider in stabiler Gehäusekonstruktion bietet eine erhöhte Feuchtigkeitsabwehr durch eingebauten Tropfenabscheider und vorgesetztem 30° Ansaugstutzen.

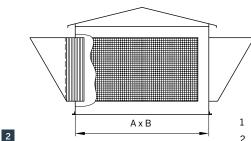
Mögliche Zusatzanforderungen:

Mehrkammersystem

Blitzschutzklemme

Kranösen


Ansaug- oder Ausblasbauwerk mit Regenwasserkaskade


Das Ansaugbauwerk ist eine geschweißte Gehäusekonstruktion mit horizontal angeordneter mehrstufiger Regenwasserkaskade und Wasserableitung im Gebäude. Besonders geeignet für flache Dächer mit dem Anforderungsprofil einer nicht sichtbaren Ansaugöffnung.

Mögliche Zusatzanforderungen:

Blitzschutzklemme

Kranösen

- 1 | Ansaugbauwerk mit Jalousieklappen
- 2 | Ansaugbauwerk mit Tropfenabscheider

Sonderbauwerke

BAUFORMEN - AUSBLASBAUWERKE

Ausblasbauwerk mit Mehrfachanschluss

Der Fortluftausblas als Sammelausblas ist eine stabile Gehäusekonstruktion mit umlaufendem Auflagerahmen, Kanal- oder Rohranschlussstutzen seitlich, symmetrischer oder asymmetrischer Wasserauffangtrichter mit Wasserableitung im Gebäude. Abdeckung durch Gitterroste.

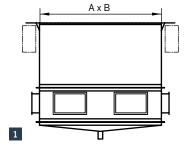
Mögliche Zusatzanforderungen:

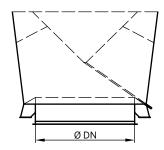
Revisionsdeckel

Blitzschutzklemme

Kranösen

Ausblasdiffusor


Die Wirkungsweise des Ausblasdiffusors ist ähnlich dem einer Deflektorhaube. Die Fortluft wird hier jedoch nicht als kompakter nach oben gerichteter Luftstrahl, sondern als ringförmiger Luftstrahl geführt. Der Vorteil dieser Bauweise ist eine geringere Bauhöhe als die einer Deflektorhaube, jedoch mit der gleichen Wirkungsweise, einem nach oben gerichteten Luftstrahl. Bei Vermeidung eines Öffnungswinkels von > 8° am Diffusor werden niedrige Widerstandsbeiwerte erreicht.


Bei ungünstigen Windverhältnissen kann Regenwasser in die angeschlossene Luftleitung gelangen. Die Ringspaltabdeckung erfolgt durch ein Schutzgitter.

LIEFERBARE GRÖSSEN

Bei vorgenannten Baugruppen handelt es sich ausschließlich um Sonderkonstruktionen. Abmessungen können individuell bei der Planung festgelegt werden.

Empfohlene Ansauggeschwindigkeit bei Ansaugbauwerken: 2 – 3 m/s auf die projezierte Ansaugfläche.

- 1 | Ausblasbauwerk mit Mehrfachanschluss
- 2 | Ausblasdiffusor

Ausschreibungstexte

Ansaugbauwerk mit Jalousieklappen

Stabile Gehäusekonstruktion aus Stahlblech verzinkt, bestückt mit elektrisch betriebenen mehrteiligen Jalousieklappen zur Vermeidung von Kaltlufteinfall und vorgesetzten mehrteiligen Wetterschutzgittern. Dachfläche geneigt mit Abtropfkante zur sicheren Regenableitung. Fußpunkt so ausgebildet, dass eine sichere Verbindung zum Aufstellsockel hergestellt werden kann. Regenkragen geteilt und lose mitgeliefert. Zur Sicherung des Baustellentransportes sind Transportösen vorzusehen.

..... mm / mm Anschlussquerschnitt: Höhe: mm Luftmenge: m³/h

Zusatzanforderungen wie Begehbarkeit, Mehrkammernausführung, isolierte Bereiche, Blitzschutzklemme sind individuell zu formulieren.

BerlinerLuft. Hersteller: Technik GmbH

Ansaugbauwerk mit Tropfenabscheider

Stabile Gehäusekonstruktion aus Stahlblech verzinkt, mit erhöhter Feuchtigkeitsabwehr durch eingebauten Tropfenabscheider und vorgesetztem 30° Ansaugstutzen. Dachfläche geneigt mit Abtropfkante zur sicheren Regenableitung. Fußpunkt so ausgebildet, dass eine sichere Verbindung zum Aufstellsockel hergestellt werden kann. Regenkragen geteilt und lose mitgeliefert. Zur Sicherung des Baustellentransportes sind Transportösen vorzusehen.

Anschlussquerschnitt: mm / mm

..... mm Luftmenge: m³/h BerlinerLuft. Hersteller: Technik GmbH

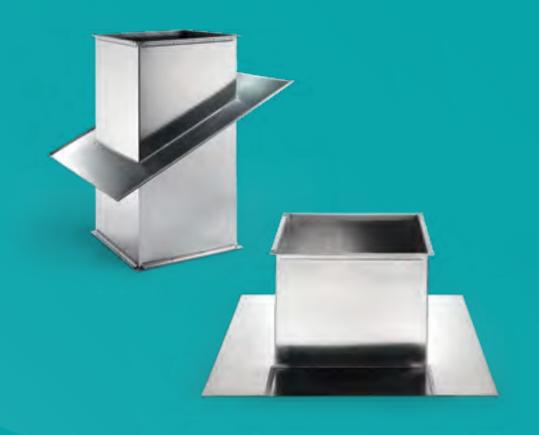
Ansaug- oder Ausblaswerk mit Regenwasserkaskade

Stabile Gehäusekonstruktion aus Stahlblech verzinkt mit horizontal angeordneter mehrstufiger Regenwasserkaskade und

Wasserableitung im Gebäude.

Anschlussquerschnitt: mm / mm mm

Luftmenge: m³/h


Kanalanschluss vertikal Hersteller: BerlinerLuft. Technik GmbH

Abmessungen mm / mm

Abdeckung durch begehbare Gitterroste. Umlaufender Auflagerahmen zur sicheren Befestigung an der Dachkonstruktion. Zur Sicherung des Baustellentransportes sind Transportösen vorzusehen.

Dachdurchführung und Dachsockel

Zur sicheren Befestigung verschiedener Dachhauben von RLT-Anlagen an der Dachkonstruktion. Sie können sowohl für Flachdächer als auch für individuelle Dachneigungen bis 45° konstruiert und gefertigt werden.

Ausschreibungstexte

Ausblaswerk für Mehrfachanschluss

Stabile Gehäusekonstruktion aus Stahlblech verzinkt für Anschluss mehrerer horizontal herangeführter Kanal- oder Rohranschlüsse (Lage und Abmessungen nach beiliegender Skizze). Wasserfangtrichter symmetrisch (asymmetrisch) mit Ablaufstutzen. Abdeckung durch begehbare Gitterroste. Umlaufender Auflagerahmen zur sicheren Befestigung an der Dachkonstruktion. Zur Sicherung des Baustellentransportes sind Transportösen vorzusehen.

Ausblasquerschnitt:	mm / mr
Höhe:	mm
Luftmenge:	m³/h
Hersteller:	BerlinerLuft. Technik GmbH

Ausblasdiffusor

Ausblaselement rund aus Stahlblech verzinkt ähnlich dem Wirkprinzip einer Deflektorhaube aus einem stabilen Rohrzylinder mit Anschluss-Nennquerschnitt und daran befestigtem Diffusor. Im Diffusor angeordnet ein den Anschlussquerschnitt überdeckender Trichter zur Ableitung von Niederschlagswasser. Der Luftaustritt erfolgt über den, zwischen Trichter und Diffusor vorhandenen Ringspalt, welcher mit einem Schutzgitter abzudecken ist. Der Fußpunkt des Ausblaselementes ist so auszubilden, dass eine sichere Befestigung am Dachsockel möglich ist. Für den Transport sind ausreichend Transportösen vorzusehen.

Anschlussdurchmesser DN:	mm / mn
_uftmenge:	m³/h
Hersteller:	BerlinerLuft.
	Technik GmbH

Dachdurchführung und Dachsockel

Dachdurchführung ohne Lasteintrag Flachdach mit Lasteintrag Flachdach mit Lasteintrag Flachdach isoliert ohne Lasteintrag Schrägdach mit Lasteintrag Schrägdach mit Lasteintrag Schrägdach

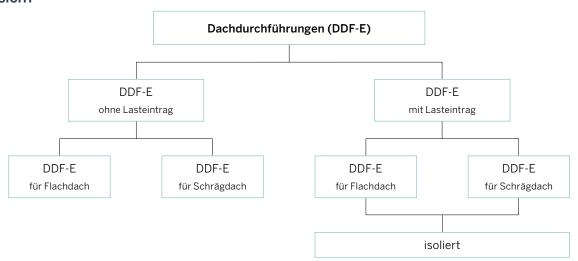
Sonderausführung

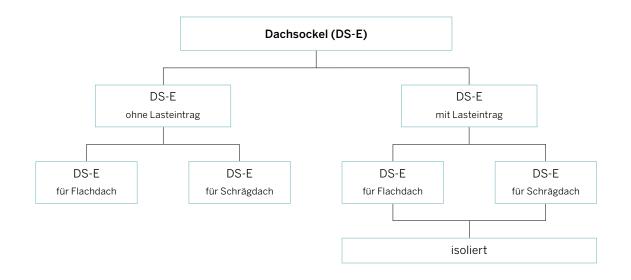
ח	а	^	h	c	^	^	k	el
$\boldsymbol{ u}$	а	u	п	5	u	u	n	ᆸ

mit Lasteintrag Flachdach
mit Lasteintrag Flachdach isoliert
mit Lasteintrag Schrägdach
mit Lasteintrag Schrägdach isoliert
Sonderausführung

- 1 | Dachdurchführung
- 2 | Dachsockel

Dachdurchführung und Dachsockel


PRODUKTBESCHREIBUNG


Dachdurchführungen und Dachsockel werden zur sicheren Befestigung von Dachhauben für RLT-Anlagen am Baukörper benötigt. Sie sind für die Anbringung auf Flachdächern sowie bei Schrägdachausführungen bis 45° Dachneigung vorgesehen. Für die Auslegung und Gestaltung der Bauteile sind die Schneelastzonen (-höhen) und die Windlasten des jeweiligen Einsatzgebietes zu beachten.

NORMEN UND VORSCHRIFTEN

DIN 1055-4	Windlasten
(DIN EN 1991-1-4)	Einwirkungen auf Tragwerke
DIN 1055-5	Schneelasten
(DIN EN 1991-1-3)	Einwirkungen auf Tragwerke
DIN 18234-3	Brandschutz großflächiger Dächer Anforderungen an Durchdringungen
DIN 18234-4	Brandschutz großflächiger Dächer Verzeichnis von Durchdringungen

ÜBERSICHT

DACHDURCHFÜHRUNGEN MIT LASTEINTRAG

Diese Art der Dachdurchführung ist so konstruiert, dass Schwingungen und Windlasten sicher aufgenommen werden können. Die sichere Befestigung an der Dachkonstruktion wird über einen umlaufenden Aufnahmekragen hergestellt. Dachhaube und Luftleitung können unmittelbar an der Dachdurchführung angeschlossen werden.

Material und Ausführung: mit Lasteintrag für Belastbarkeit werden grundsätzlich in einer stabilen geschweißten Bauweise hergestellt. Die Dachdichtungsbahnen können unmittelbar an die Wandung der Dachdurchführung herangeführt und durch Verkleben befestigt werden.

DACHDURCHFÜHRUNGEN OHNE LASTEINTRAG

Bei dieser Art der Dachsockel werden die Dachhauben von den Luftleitungen getragen. Eigenlast und Windlasten können damit von der Dachkonstruktion ferngehalten werden und werden stattdessen über eine stabile Luftleitung im Gebäude abgefangen.

Sie dienen ausschließlich dazu, den Durchgang der Luftführung durch das Dach sicher zu stellen, indem die Dachabdichtung gegenüber dem Dachsockel hergestellt werden kann.

Der Dachsockel muss last- und schwingungsfrei bleiben. Der Zwischenraum zwischen Dachdurchführung und Luftleitung ist nach Montage der einzelnen Elemente vor Ort mit Isoliermaterial auszufüllen.

Material und Ausführung: Ab Kantenlänge von > 1200 mm wird der Dachsockel aus statischen Gründen geschweißt ausgeführt.

DACHSOCKEL MIT LASTEINTRAG

Dachsockel sind in der Lage, Hauben- und Windlasten aufzunehmen. Je nach Erfordernis sind sie in gefalzter und geschweißter Ausführung lieferbar.

Ihre Befestigung erfolgt über einen umlaufend angeordneten Aufnahmekragen.

Die geschweißte Ausführung sorgt für absolute Dichtheit. durch die fachgerechte Eindichtung des Dachsockels. Der Durchbruch durch die Dachkonstruktion ist so vorzunehmen, daß eine glatte luftführende Innenseite ausgebildet wird.

TOPPLATTE

Die Ausführung des geschweißten Dachsockels kann ebenfalls als 2. Auflageplatte, bzw. Topplatte eingesetzt werden. Sie wird bei isolierten Flachdächern angewendet und erleichtert dem Dachdecker das Einkleben der Dachhaut, da diese nicht mehr am Sockel hochgezogen wird.

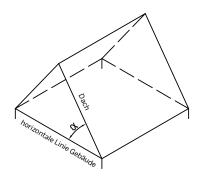
ANPASSUNG AN DIE DACHFORM

Dachdurchführungen und Dachsockel sind einsetzbar für die Dachformen:

Flachdach

Schrägdach (flach geneigtes Dach bis Steildach)

Bei der Ausführung für Schrägdach ist die genaue Angabe der Dachneigung erforderlich. Die Definition der Dachneigung lautet


Die Dachneigung ist der Winkel zwischen Dach und horizontaler Linie des Hauses. Die Angabe erfolgt als Winkel (Alpha) in Grad (°).

Angaben in Prozent sind vom Auftraggeber über die arctan-Funktion in die Dachneigung Alpha $^\circ$ umzurechnen.

DACHNEIGUNG

Hinweis zur Belastbarkeit von Dachdurchführungen und Dachsockeln

Die Belastbarkeit von Dachdurchführungen und Dachsockeln ist aufgrund unterschiedlichster Standortbedingungen (Massen, Windlasten, Schneehöhen, Dachkonstruktion usw.) immer durch den Auftraggeber zu ermitteln. Alle relevanten Angaben sind dem Hersteller bei Auftragserteilung zu übergeben.

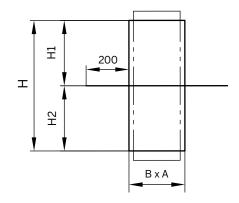
Dachdurchführung und Dachsockel

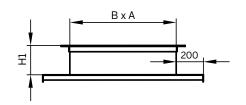
BAUHÖHEN

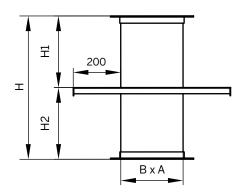
Die Bauhöhen der BerlinerLuft. Dachdurchführungen und Dachsockel werden ohne weitere Angaben in den nachfolgend dargestellten Abmessungen (Höhenmaße) als Standardausführung geliefert. Für H1 gilt eine Standardhöhe von 400 mm. Andere Anforderungen sind anzugeben. Abweichend davon sind die Höhenmaße den Schneehöhenzonen anzupassen. Das Höhenmaß der Bauteile über Dach ist so festzulegen, dass mit Sicherheit kein Schnee in die Anlage gesaugt wird. Die Angaben dazu müssen immer durch die Planung erfolgen.

LIEFERBARE GRÖSSEN

Dachsockel mit quadratischem und rechteckigem Querschnitt werden in der Standardausführung mit einem Winkel von 0° bis 45° und in den Abmessungen 300 mm bis 2500 mm hergestellt. Sonderanfertigungen und größere Abmessungen auf Anfrage möglich. Die Anbindung des Aufnahmekragens ist durch den Auftraggeber anzugeben.

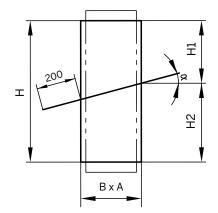

WERKSTOFFE

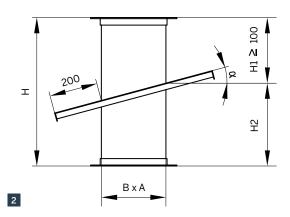

Materialart	Güte	Norm
Stahlblech verzinkt	DX51D + Z275 MA-C	DIN EN 10346 / 10143
VA- Bleche (Oberfläche 2B)	1.4301 (V2A)	DIN EN 10088
Aluminium	AIMg3 (3.3535; EN AW-5754)	DIN EN 485-2

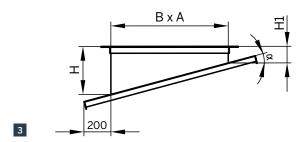

2

Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.

STANDARDAUSFÜHRUNGEN FLACHDACH



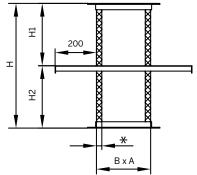


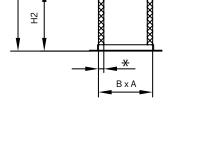

- 1 | Flachdach-Dachdurchführung ohne Lasteintrag
- 2 | Flachdach-Dachdurchführung mit Lasteintrag
- 3 | Flachdach-Dachsockel mit Lasteintrag

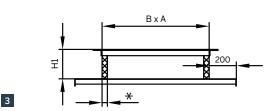
3

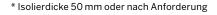
STANDARDAUSFÜHRUNGEN SCHRÄGDACH

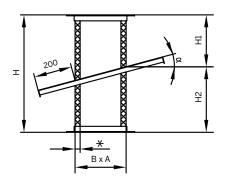
- 1 | Schrägdach-Dachdurchführung ohne Lasteintrag
- 2 | Schrägdach-Dachdurchführung mit Lasteintrag
- 3 | Schrägdach-Dachsockel mit Lasteintrag

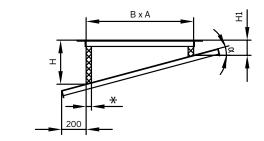

Dachdurchführung und Dachsockel


ISOLIERUNGEN


Die Dachdurchführungen und Dachsockel von BerlinerLuft. können zusätzlich werkseitig mit einer Isolierung (Wärmedämmung) versehen werden. Ausgehend von der konstruktiven Gestaltung wird die Dämmung immer innenliegend ausgeführt. Die Standard-Dämmdicke beträgt 50 mm und besteht aus einer Mineralwollfaser.


Diese wird durch einen innenliegenden Vollblechkanal abgedeckt, welcher jeweils an den Enden (Stoßstellen) durch Profilbleche abgedeckt wird. Die Querschnittverringerung ist bei der Auslegung der Luftgeschwindigkeit zu beachten.


ISOLIERTE AUSFÜHRUNG MIT LASTEINTRAG



- 1 | Flachdach-Dachdurchführung
- 2 | Schrägdach-Dachdurchführung
- 3 | Flachdach-Dachsockel

2

| Schrägdach-Dachsockel

SONDERAUSFÜHRUNGEN

Die Dachdurchführungen und Dachsockel können für spezielle Einsatzfälle auch mit Schalldämpfer ausgeführt werden. Die Bauhöhe ist abhängig von den technischen Bedingungen hinsichtlich der erforderlichen Schalldämmung.

Für die Statik der Dachkonstruktion sind die Eigenmassen der Dachdurchführung bzw. des Dachsockels des eingebauten Schalldämpfers und der Dachhaube zu beachten.

Ausschreibungstext

DACHDURCHFÜHRUNG

Dachdurchführung mit umlaufendem	Zutreffendes einsetzen:	
Aufnahmekragen 200 mm	ohne Lasteintrag	
	mit Lasteintrag – geschweißte Ausführung	
Material	Zutreffendes einsetzen:	
	Stahl verzinkt	
	Edelstahl 1.4301	
	Aluminium	
Abmessung	Zutreffendes einsetzen:	
	DN mm	
	A × B mm	
Höhe über Dach	Zutreffendes einsetzen:	
	Standard H1 = 400 mm	
	H1 = mm	
Höhe gesamt	H _{ges} = mm	
Dachform	Zutreffendes einsetzen:	
	Flachdach	
	Schrägdach - Dachneigung°	
Anschlussrahmen	Zutreffendes einsetzen:	
	oben	
	unten	
Isoliert	Isolierdicke mm	
Hersteller	BerlinerLuft. Technik GmbH	

Ausschreibungstext

DACHSOCKEL

Dachsockel mit umlaufendem Aufnahmekragen	Zutreffendes einsetzen:	
in geschweißter Ausführung 200 mm	ohne Lasteintrag	
	mit Lasteintrag – geschweißte Ausführung	
Material	Zutreffendes einsetzen:	
	Stahl verzinkt	
	Edelstahl 1.4301	
	Aluminium	
Abmessung	Zutreffendes einsetzen:	
	DNmm	
	A × Bmm	
Höhe über Dach	Zutreffendes einsetzen:	
	Standard H1 = 400 mm	
	H1 =mm	
Höhe gesamt	H _{ges} =mm	
Dachform	Zutreffendes einsetzen:	
	Flachdach	
	Schrägdach – Dachneigung°	
Anschlussrahmen	Zutreffendes einsetzen:	
	oben	
	unten	
isoliert	Isolierdickemm	
Hersteller	BerlinerLuft. Technik GmbH	

Wetterschutzgitter

Wetterschutzgitter WSG

ANWENDUNG

Wetterschutzgitter verhindern das Eindringen von Niederschlagswasser in Ansaug- oder Ausblasöffnungen von Gebäudefassaden als Komponente lufttechnischer Anlagen oder bei der natürlichen Belüftung von Gebäudekomplexen.

KONSTRUKTIVER AUFBAU

Das Wetterschutzgitter besteht aus speziell geformten regenabweisenden, waagerecht angeordneten Lamellen, welche in einem umlaufenden Rahmen befestigt sind. Der Lamellenabstand ist so gewählt, dass ein guter Kompromiss zwischen Schutzwirkung und Druckverlust erreicht wird. Wetterschutzgitter sind rückseitig mit einem Vogelschutzgitter versehen.

Die Standardausführung aller Wetterschutzgitter hat einen ungelochten Rahmen. Die Ausführung mit gelochtem Rahmen ist bei Bedarf entsprechend anzugeben.

Anmerkung

Da Wetterschutzgitter keinen absoluten Schutz gegen eindringende Feuchtigkeit gewährleisten können (siehe Diagramm Durchlassgrad), ist, je nach Erfordernis, eine Entwässerungsmöglichkeit im anschließenden Kanalstrang vorzusehen.

WERKSTOFFE

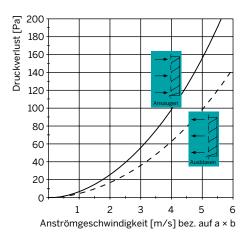
Stahl verzinkt (Sv)

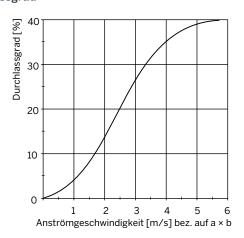
Edelstahl 1.4301 (VA)

Aluminium EN AW-6060 T66 (Alu)

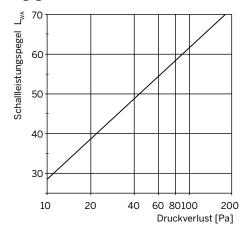
Kupfer (Cu) Sonderausführung

Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.


Wetterschutzgitter aus Stahl verzinkt Wetterschutzgitter aus Stahl verzinkt, Rahmen gelocht	WSG-ESv WSG-ESv1
Wetterschutzgitter aus Stahl verzinkt, pulverbeschichtet	WSG-ESv-RAL
Wetterschutzgitter aus Aluminium Strangpressprofilen Wetterschutzgitter aus Aluminium, Rahmen gelocht	WSG-EAlu WSG-EAlu1
Wetterschutzgitter aus Edelstahl Wetterschutzgitter aus Edelstahl, Rahmen gelocht	WSG-EVA WSG-EVA1
Wetterschutzgitter aus Kupfer Wetterschutzgitter aus Kupfer, Rahmen gelocht	WSG-ECu WSG-ECu1


LEISTUNGSDATEN

Die empfohlene Ausströmgeschwindigkeit bezogen auf $b \times h$ ist 2 bis 2,5 m/s.


Druckverlust

Durchlassgrad

Strömungsgeräusch

Korrektur K in Abhängigkeit von der Anströmfläche					
a × b in m	² K in dB				
0.04	14				

a × b in m²	K IN aB				
0,04	-14				
0,06	-12				
0,1	-10				
0,2	-7				
0,4	-4				
0,6	-2				
1	0				
2	3				
4	6				
8	9				

Korrektur für Schallleistungspegel

LIEFERBARE GRÖSSEN

Breite

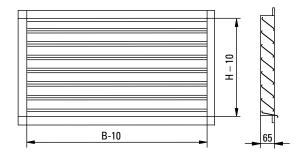
alle Maße > 200 mm bis 2.000 mm ohne Teilung
alle Maße > 2.000 mm werden geteilt ausgeführt

Höhe

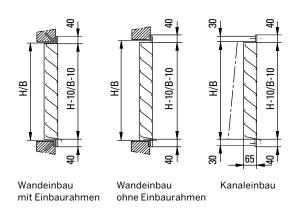
alle Maße > 200 mm bis 2.500 mm ohne Teilung

alle Maße > 2.500 mm werden geteilt ausgeführt

Hinweis


Wetterschutzgitter werden immer Nennmaß minus 10~mm geliefert, um eine Montage auch direkt im Kanal zu garantieren.

Für die Wandmontage kann bei Bedarf ein Einbaurahmen (ER), passend zum WSG geliefert werden.



Wetterschutzgitter WSG

PRINZIPDARSTELLUNG

EINBAUMASSE

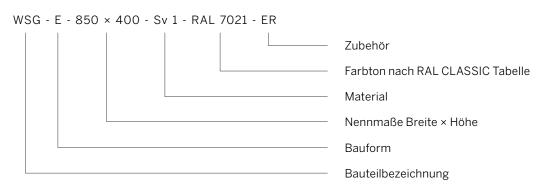
AUSSCHREIBUNGSTEXT

Wetterschutzgitter zum Schutz gegen Regen und zum Schutz gegen das Eindringen von Fremdkörpern in die Ansaug- und Abluftöffnungen von lüftungstechnischen Anlagen, hergestellt aus einem umlaufenden Rahmen mit waagerecht angeordneten speziellen, regenabweisenden Lamellen und hinterlegtem Vogelschutzgitter.

(Ausführung und Material nach vorgenannter Dokumentation entsprechend den technischen Erfordernissen einfügen).

BESTELLBEISPIEL

Wetterschutzgitter, eckig, Größe 850 × 400 mm


Stahl verzinkt, Rahmen gelocht, RAL 7021, Einbaurahmen

Hersteller: BerlinerLuft.

Technik GmbH

Bestellcode: WSG-E-850 x 400-Sv1-RAL 7021-ER

TYPENSCHLÜSSEL

Wetterschutzgitter Kombinationen

Wetterschutzgitter – Kombinationen WSG/K-E

PRODUKTBESCHREIBUNG

Anwendung

Wetterschutzgitter kombiniert mit Jalousieklappe oder Überdruckklappe haben eine Doppelfunktion in den Ansaugund Abluftöffnungen von lüftungstechnischen Anlagen. Sie verhindern das Eindringen von Niederschlagswasser sowie Fremdkörpern und bieten die Möglichkeit der Luftmengenregulierung bzw. des Absperrens der Lüftungsöffnung bei Stillstand der Anlage.

Konstruktiver Aufbau

Kombination Wetterschutzgitter mit Jalousieklappe

Diese Baugruppe besteht aus einem Wetterschutzgitter der Serie WSG/K-E-Sv oder WSG/K-E-Alu und einer Jalousieklappe der Serie JK-I-SS. Über einen speziell geformten Rahmen an der Jalousieklappe werden die beiden Bauteile fest miteinander verbunden.

Kombination Wetterschutzgitter mit Überdruckklappe

Diese Baugruppe besteht aus einem gemeinsamen Rahmen, welcher die Grundbauelemente der Serie WSG-E-Sv oder WSG-E-Alu und der Serie ÜDK enthält.

Werkstoffe

Stahl verzinkt

Aluminium

Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.

BAUFORMEN UND BEZEICHNUNGEN

Wetterschutzgitter Stahl verzinkt/ Jalousieklappe Stahl verzinkt	WSG/ K-E-Sv - JK 120
Wetterschutzgitter Stahl verzinkt/ Jalousieklappe Stahl verzinkt	WSG/ K-E-Sv - JK 180
Wetterschutzgitter Aluminium/ Jalousieklappe Stahl verzinkt	WSG/ K-E-Alu - JK 120
Wetterschutzgitter Aluminium/ Jalousieklappe Stahl verzinkt	WSG/ K-E-Alu - JK 180
Wetterschutzgitter Stahl verzinkt/ Überdruckklappe Stahl/Alu	WSG/K-E-Sv - ÜDK
Wetterschutzgitter Aluminium/ Überdruckklappe Stahl/Alu	WSG/K-E-Alu - ÜDK

LEISTUNGSDATEN

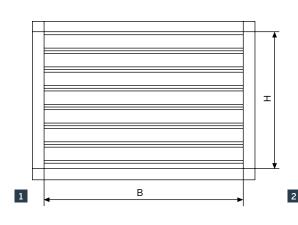
Die empfohlene Anströmgeschwindigkeit bezogen auf $a \times b$ ist 2....3 m/s, max. 5 m/s

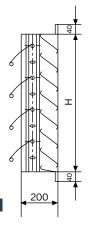
Weitere Leistungsdaten und Ausführungsdetails siehe unter:

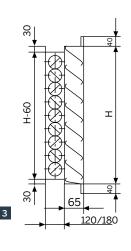
Wetterschutzgitter

Jalousieklappen

Überdruckklappen


HINWEIS


Bei angebauten Jalousieklappen ist zu beachten, dass die Antriebsachse einen Überstand von 50 mm zur Außenkante Wetterschutzgitter hat.



- | Wetterschutzgitter mit Jalousieklappe
- 2 | Wetterschutzgitter mit Überdruckklappe

EINBAUMASSE

- 1 | Prinzipdarstellung mit Maßen
- 2 | WSG/K-E-ÜDK
- 3 | WSG/K-E-JK 120; WSG/K-E-JK 180

LIEFERBARE GRÖSSEN

Standardabmessungen									
WSG/K-E-ÜDK		WSG/K-	E-JK 120	WSG/K-E-JK 180					
Breite	Höhe	Breite	Höhe	Breite	Höhe				
200	160	200	270	300	240				
300	240	300	370	400	405				
400	320	400	470	500	570				
600	480	500	570	600	730				
700	560	600	670	700	900				
800	640	700	770	800	1065				
900	720	800	870	900	1230				
1000	800	900	970	1000	1395				
1100	880			1100	1560				
1200	960			1200	1725				
1300	1040			1300	1890				
1400	1120			1400	2055				
1500	1200			1500					
1600	1360			1600					
	1440								
	1520								
	1600								
	1680								
	1760								
	1840								
	1920								

HINWEIS

Das bestimmende Höhenmaß ist immer das Teilungsmaß der jeweiligen Klappe.

JK 120	Teilungsmaß der Höhe 100 mm
JK 180	Teilungsmaß der Höhe 165 mm
ÜDK	Teilungsmaß der Höhe 80 mm

Das Breitenmaß wird im 100 mm Raster vorgesehen, andere Maße, bis zur maximal angegebenen Breite, sind möglich. Für die Wandmontage kann bei Bedarf ein Einbaurahmen (ER), Material Stahl verzinkt, passend zum WSG geliefert werden. Eine komplette Übersicht befindet sich in der aktuellen BerlinerLuft. Preisliste.

Breiten und Höhen sind kombinierbar

max. angegebene Breiten und Höhen nicht überschreiten

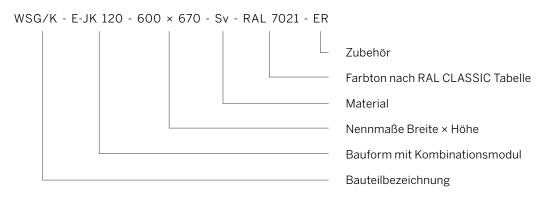
bei Bedarf ist eine Teilung erforderlich

Ausschreibungstext

WETTERSCHUTZGITTER - KOMBINATIONEN WSG/K-E

Kombination Wetterschutzgitter, zum Schutz gegen Regen und zum Schutz gegen das Eindringen von Fremdkörpern in die Ansaug- und Abluftöffnungen von lüftungstechnischen Anlagen, mit einer Jalousieklappe bzw. einer Überdruckklappe zur Luftmengenregulierung bzw. zum Absperren der Lüftungsöffnung bei Stillstand der Anlage. (Ausführung und Material nach vorgenannter Dokumentation entsprechend den technischen Erfordernissen einfügen).

BESTELLBEISPIEL


Wetterschutzgitter Kombination, Jalousieklappe Teilung 100, Größe 600 × 670 mm, Stahl verzinkt, Oberfläche WSG farblich behandelt mit RAL 7021 mit Einbaurahmen

Hersteller: BerlinerLuft.

Technik GmbH

Bestellcode: WSG/K-E-JK 120-600×670-Sv-RAL 7021-ER

TYPENSCHLÜSSEL

Form-Wetterschutzgitter

Form-Wetterschutzgitter WSG/F

PRODUKTBESCHREIBUNG

Anwendung

Form-Wetterschutzgitter kommen zur Anwendung, wenn gestalterische Sonderformen der Ansaug- und Ausblasöffnungen von lüftungstechnischen Anlagen an Gebäudefassaden erforderlich sind. Sie verhindern das Eindringen von Niederschlagswasser und groben Verunreinigungen in die anschließenden Kanalstränge.

Konstruktiver Aufbau

Das Form-Wetterschutzgitter besteht aus speziellen regenabweisenden, waagerecht angeordneten Lamellen, welche in einem umlaufenden Rahmen befestigt sind.

Der Lamellenabstand ist so gewählt, dass ein guter Kompromiss zwischen Schutzwirkung und Druckverlust erreicht wird. Form-Wetterschutzgitter sind rückseitig mit einem Vogelschutzgitter versehen.

Die Standardausführung aller Wetterschutzgitter hat einen ungelochten Rahmen. Die Ausführung mit gelochtem Rahmen ist bei Bedarf entsprechend anzugeben.

Anmerkung

Da Form-Wetterschutzgitter keinen absoluten Schutz gegen eindringende Feuchtigkeit gewährleisten können, (siehe Diagramm Durchlassgrad, Kapitel Wetterschutzgitter) ist – je nach Erfordernis – eine Entwässerungsmöglichkeit im anschließenden Kanalstrang vorzusehen.

Werkstoffe

Stahl	verzinkt

Edelstahl 1.4301

Aluminium

Kupfer

Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.

Bezeichnungen

Form-Wetterschutzgitter aus Stahl verzinkt	WSG/F Sv
Form-Wetterschutzgitter aus Stahl verzinkt, pulverbeschichtet	WSG/F Sv RAL
Form-Wetterschutzgitter aus Aluminium Strangpressprofilen	WSG/F – Alu
Form-Wetterschutzgitter aus Edelstahl	WSG/F – VA
Form-Wetterschutzgitter aus Kupfer	WSG/F – Cu

Leistungsdaten

Die empfohlene Anströmgeschwindigkeit bezogen auf a \times b ist 2....3 m/s, max. 5 m/s.

Weitere Leistungsdaten und Ausführungsdetails siehe unter: **Wetterschutzgitter**.

Lieferbare Größen

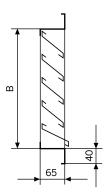
Breite (A) alle Maße > 200 mm bis 2000 mm ohne Teilung

Höhe (B) alle Maße > 200 mm bis 2000 mm ohne Teilung

Hinweis

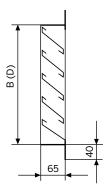
Wetterschutzgitter werden immer Nennmaß minus 10 mm geliefert. Für die Wandmontage kann bei Bedarf ein Einbaurahmen (ER), Material Stahl verzinkt, passend zum WSG/F geliefert werden.

Form-Wetterschutzgitter WSG/F9


BAUFORMEN

DAOI ORMEN					
Bauform eckig	La D al		Bauform rund	_ Z	
WSG/F1		A B	WSG/F7		A B
	1	С		m ∪ †	B C Z
	CA	D Z		A	<u>L</u>
WSG/F2	 		WSG/F8	Z	
1104712		В	1100710		A B
		C D			B C Z
	A	E F		D D	
		Z		7	
WSG/F3		A	WSG/F9	⁷	D
	<u> </u>	B Z			Z
	A			D	
	^			7	
WSG/F4	A C J	A	WSG/F10	A	A
		В			B R1
					R2
	↓ T	D E F		A	Z
	, ,	Z			
WSG/F5	<mark>∢ ^C →</mark>	A	WSG/F11		A
	2	<u>B</u>			B R1
		C Z		A	Z
	→ A				
WSG/F6		Δ	WSG/F12	Z	Δ
-		В			A B R1
	Z	A B C D Z			R1 Z
	A	Z		A	

andere Formen sind auf Anfrage möglich, Standardmaß Z = 40 mm


Form-Wetterschutzgitter WSG/F

EINBAUMASSE

alle anderen Maße siehe Skizzen F1 bis F6

Bauform eckig

alle anderen Maße siehe Skizzen F7 bis F12

Bauform rund

AUSSCHREIBUNGSTEXT

Form-Wetterschutzgitter zum Schutz gegen Regen und zum Schutz gegen das Eindringen von groben Verunreinigungen in den Ansaug- und Abluftöffnungen von lüftungstechnischen Anlagen, hergestellt aus einem umlaufenden Rahmen mit waagerecht angeordneten speziellen, regenabweisenden Lamellen und hinterlegtem Vogelschutzgitter. (Bauform F1 bis F12 entsprechend vorgenannter Dokumentation nach Erfordernis angeben). Verwenden Sie hier o. g. Maßbilder und setzen die konkret zugeordneten Maßangaben ein.

Andere Bauformen sind entsprechend zu dokumentieren.

BESTELLBEISPIEL

Form-Wetterschutzgitter, Bauform 1, Größe (nach Vorgabe, Skizze), Stahl verzinkt, RAL 7021, mit Einbaurahmen

Hersteller: BerlinerLuft.

Technik GmbH

Bestellcode:

WSG/F-1-A, D400, B800, C100, Z40-Sv-RAL 7021-ER

TYPENSCHLÜSSEL

WSG/F - 1 - A, D400, B800, C100, Z40 - Sv - RAL 7021 - ER

Zubehör (bei Bedarf)

Farbton nach RAL CLASSIC Tabelle

Material

Nennmaße

Bauform

Bauteilbezeichnung

Akustik-**Wetterschutzgitter**

Akustik-Wetterschutzgitter WSG/AK

ANWENDUNG

Akustik-Wetterschutzgitter WSG/AK verhindern das Eindringen von Niederschlagswasser bei gleichzeitiger Reduzierung der Geräuschübertragung über die Ansaug- oder Ausblasöffnungen an Gebäudefassaden als Komponente einer lufttechnischen Anlage oder bei der natürlichen Belüftung von Gebäudekomplexen.

Im Vergleich zum üblichen Wetterschutzgitter wird eine deutliche Geräuschminderung erreicht (siehe Diagramm).

KONSTRUKTIVER AUFBAU

Das Akustik-Wetterschutzgitter WSG/AK besteht aus einem stabilen Gehäuse mit waagerecht angeordneten, speziell ausgebildeten, regenabweisenden Lamellenkörpern. Diese Lamellen sind mit einer Mineralwollfüllung versehen, welche durch Glasvlies und eine Lochblechabdeckung geschützt ist. Zum Schutz vor dem Eindringen grober Verunreinigung wie Laub, Kleintieren etc. ist auf der Rückseite des WSG/AK ein Schutzgitter angebracht. Das Gehäuse kann als Anschlag-

gehäuse (Bauform A) oder als Einsteckgehäuse (Bauform E) ausgeführt werden. Bei besonders hohen Anforderungen an die Schalldämmung besteht die Möglichkeit, die Wirkung des WSG/AK durch eine Doppelanordnung (Bauform AD oder ED) zu erhöhen.

Für die Erstellung von Gitterbändern an Gebäudefassaden werden akustisch inaktive Blindgitter (Bauform AB oder EB) mit gleichem äußerem Aussehen angeboten.

Im Bedarfsfall können die WSG/AK mit einem Einfrierschutz ausgerüstet werden.

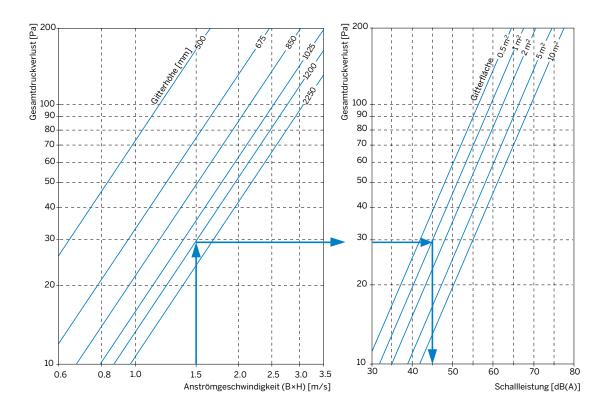
WERKSTOFFE

Stahl verzinkt	
Aluminium (AlMg3)	
Edelstahl (1.4301)	

Farbgebung in RAL Tönen nach CLASSIC Tabelle auf Anfrage (ausgeschlossen Metallic-Farben). Farben werden in seidenmatt ausgeführt.

BAUFORMEN UND BEZEICHNUNGEN

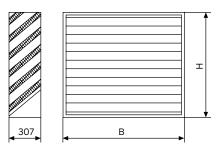
Bauform	Werkstoff	Bezeichnung
Einsatz-Einzelgitter (EE) Anschlag-Einzelgitter (AE) Einsatz-Doppelgitter (ED) Anschlag-Doppelgitter (AD)	Stahl verzinkt Stahl verzinkt Stahl verzinkt Stahl verzinkt	WSG/AK-EE-Sv WSG/AK-AE-Sv WSG/AK-ED-Sv WSG/AK-AD-Sv
Einsatz-Blindgitter (EB) Anschlag-Blindgitter (AB)	Stahl verzinkt Stahl verzinkt	WSG/AK-EB-Sv WSG/AK-AB-Sv
Bauformen wie vor	Aluminium	WSG/AKAlu
Bauformen wie vor	Edelstahl	WSG/AKVA


Akustik-Wetterschutzgitter

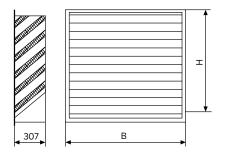
EINZELGITTER

Leistungsdaten

Oktavfrequenz [Hz]	63	125	250	500	1k	2k	4k	8k
Einfügungsdämpfung [dB]	2	5	6	9	14	15	14	13



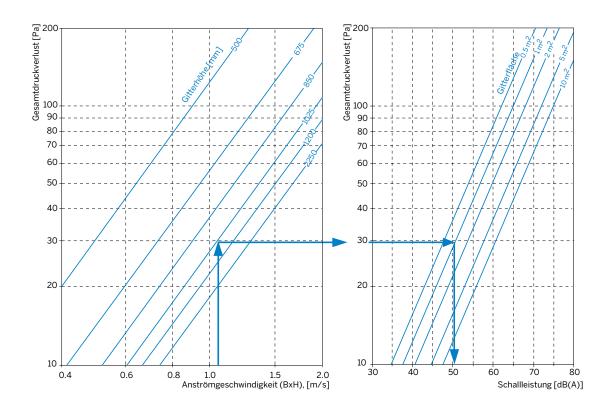
Auslegungsbeispiel


B = 800 mm, H = 1200 mm \rightarrow Anströmfläche ca. 1 m²

Anströmgeschwindigkeit: 1,5 m/s → Druckverlust 30 Pa

→ Schallleistung 45 dB(A)

 ${\sf WSG/AK\text{-}EE-Einsatz\text{-}Einzelgitter}$

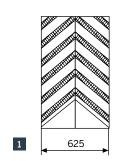

WSG/AK-AE – Anschlag-Einzelgitter

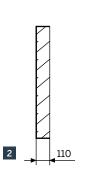
Akustik-Wetterschutzgitter WSG/AK

DOPPELGITTER

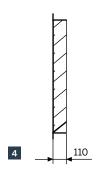
Leistungsdaten

Oktavfrequenz [Hz]	63	125	250	500	1k	2k	4k	8k	
Einfügungsdämpfung [dB]	3	5	8	12	18	24	27	28	




Auslegungsbeispiel


B = 1000 mm, H = 1025 mm \longrightarrow Anströmfläche ca. 1 m²


Anströmgeschwindigkeit: 1,1 m/s → Druckverlust 30 Pa

→ Schallleistung 50 dB(A)

- 1 | WSG/AK-ED Einsatz-Doppelgitter
- 2 | WSG/AK-EB Einsatz-Blindgitter
- 3 | WSG/AK-AD Anschlag-Doppelgitter
- 4 | WSG/AK-AB Anschlag-Blindgitter

LIEFERBARE GRÖSSEN

Das Lamellenraster der WSG/AK ist 175 mm. Die Bautiefe beträgt 307 mm.

Breite alle Maße > 300 mm bis 2500 mm ohne Teilung möglich Höhe kleinste Höhe – 500 mm

max. Höhe – 2250 mm

Hinweis

Das Gesamthöhenmaß des Akustik-Wetterschutzgitter wird unter Beachtung der Lamellenrasterung (175 mm) konstruktiv angepasst.

In Reihe angeordnete WSG/AK sind an den Stoßstellen durch Blechstreifen abzudecken.

FREIE FLÄCHEN UND MASSEN

Die Angaben zu den Massen sind Orientierungswerte für die Basisausführung. (WSG/AK-EE)

Höhe H [mm]	Techn. Angaben Massen		Breite B [mm]											
			300	500	700	900	1100	1300	1500	1700	1900	2100	2300	2500
500	fr. Fläche Volumenstrom¹	m² m³/h	0,018 200	0,030 330	0,043 460	0,055 590	0,067 720	0,079 850	0,091 985	0,103 1115	0,115 1250	0,128 1380	0,140 1510	0,152 1640
	Masse Stahl Masse Alu	kg kg	12 5	16 6	20 8	24 9	28 11	31 13	35 14	39 16	43 18	47 19	51 21	55 22
675	fr. Fläche Volumenstrom¹	m² m³/h	0,036 400	0,061 655	0,085 920	0,109 1180	0,134 1445	0,158 1700	0,182 1970	0,207 2230	0,231 2490	0,255 2750	0,279 3020	0,304 3280
	Masse Stahl Masse Alu	kg kg	16 6	22 9	27 11	33 14	39 16	44 18	50 21	56 23	61 26	67 28	73 30	78 33
850	fr. Fläche Volumenstrom¹	m² m³/h	0,055 590	0,091 985	0,128 1380	0,164 1770	0,200 2165	0,237 2560	0,273 2950	0,310 3345	0,346 3740	0,383 4130	0,419 4530	0,456 4920
	Masse Stahl Masse Alu	kg kg	21 8	28 12	35 15	43 18	50 21	57 24	65 27	72 31	79 34	87 37	94 40	101 43
1025	fr. Fläche Volumenstrom¹	m² m³/h	0,073 790	0,122 1310	0,170 1840	0,219 2360	0,267 2890	0,316 3410	0,365 3940	0,413 4460	0,462 4985	0,510 5510	0,559 6040	0,608 6560
	Masse Stahl Masse Alu	kg kg	25 10	34 14	43 18	52 22	61 26	70 30	79 34	88 38	97 42	106 46	115 50	124 54
1200	fr. Fläche Volumenstrom¹	m² m³/h	0,091 985	0,152 1640	0,213 2300	0,273 2950	0,334 3610	0,395 4265	0,456 4920	0,516 5580	0,577 6230	0,638 6890	0,699 7545	0,759 8200
	Masse Stahl Masse Alu	kg kg	30 12	40 17	51 22	62 26	73 31	83 36	94 40	105 45	115 50	126 55	137 59	147 64

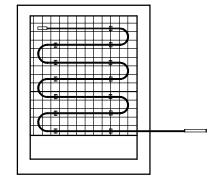
 $^{^{\}mathrm{1}}$ Volumenstrom bei Ansauggeschwindigkeit von 3 m/s im freien Querschnitt

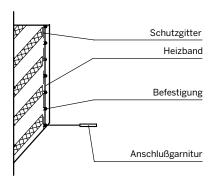
Hinweis: Die dargestellten Abmessungen und Massen sind lediglich Richtwerte. Verbindliche technische Parameter bei Auslegung auf Anfrage über BerlinerLuft.

Akustik-Wetterschutzgitter WSG/AK

Höhe	Techn. Angaben							Breite	B [mm]					
H [mm]	Massen		300	500	700	900	1100	1300	1500	1700	1900	2100	2300	2500
1375	fr. Fläche	m²	0,109	0,182	0,255	0,328	0,401	0,474	0,547	0,620	0,693	0,765	0,838	0,911
	Volumenstrom ¹	m³/h	1180	1970	2760	3540	4330	5120	5900	6690	7840	8270	9050	9840
13/3	Masse Stahl	kg	34	47	59	71	84	96	109	121	133	146	158	170
	Masse Alu	kg	14	20	25	31	36	42	47	52	58	63	69	74
1550	fr. Fläche	m²	0,128	0,213	0,298	0,383	0,468	0,553	0,638	0,723	0,808	0,893	0,978	1,063
	Volumenstrom¹	m³/h	1380	2300	3215	4130	5050	5970	6890	7810	8730	9645	10560	11480
1330	Masse Stahl	kg	39	53	67	81	95	109	123	137	151	165	179	193
	Masse Alu	kg	16	22	29	35	41	47	54	60	66	72	79	85
1725	fr. Fläche	m²	0,146	0,243	0,340	0,437	0,535	0,632	0,729	0,826	0,923	1,021	1,118	1,215
	Volumenstrom¹	m³/h	1575	2525	3675	4725	5775	6825	7875	8925	9975	11020	12070	13120
1/23	Masse Stahl	kg	43	59	75	91	106	122	138	153	169	185	201	216
	Masse Alu	kg	18	25	32	39	46	53	60	67	74	81	88	95
1900	fr. Fläche	m²	0,164	0,273	0,383	0,492	0,601	0,711	0,820	0,929	1,039	1,148	1,258	1,367
	Volumenstrom¹	m³/h	1770	2950	4130	5315	6495	7675	8860	10040	11220	12400	13580	14760
1300	Masse Stahl	kg	48	65	83	100	118	135	152	170	187	205	222	239
	Masse Alu	kg	20	28	35	43	51	59	67	74	82	90	98	106
2075	fr. Fläche	m²	0,182	0,304	0,425	0,547	0,668	0,790	0,911	1,033	1,154	1,276	1,397	1,519
	Volumenstrom¹	m³/h	1970	3280	4590	5900	7220	8530	9845	11155	12460	13780	15090	16400
2073	Masse Stahl	kg	52	71	91	110	129	148	167	186	205	224	243	262
	Masse Alu	kg	22	30	39	47	56	65	73	82	90	99	107	116
2250	fr. Fläche	m²	0,200	0,334	0,468	0,601	0,735	0,869	1,002	1,136	1,270	1,403	1,537	1,671
	Volumenstrom¹	m³/h	2165	3610	5050	6495	7940	9380	10830	12270	13710	15150	16600	18040
2230	Masse Stahl	kg	57	78	98	119	140	161	182	202	223	244	265	285
	Masse Alu	kg	24	33	42	52	61	70	80	89	98	108	117	126

Hinweis: Die dargestellten Abmessungen und Massen sind lediglich Richtwerte. Verbindliche technische Parameter bei Auslegung auf Anfrage über BerlinerLuft.


 $^{^{\}rm 1}$ Volumenstrom bei Ansauggeschwindigkeit von 3 m/s im freien Querschnitt


EINFRIERSCHUTZ (ES)

Bei Temperaturen unter +2 °C und einer Luftfeuchte über 60 % (z. B. Nebel) besteht die Gefahr der Vereisung des Schutzgitters im Ansaugfall. Um den Betrieb der lufttechnischen Anlage sicher zu stellen, kann das Schutzgitter des AWG elektrisch beheizt werden. Dazu werden besonders temperatur- und UV-beständige Heizbänder an der Gitterkonstruktion fixiert.

Für die vollautomatische Steuerung des Einfrierschutzes ist ein Eismelder oder eine andere Kombination aus Thermostat und Hygrostat vorzusehen.

Die Auswahl und Installation der Steuereinrichtung ist durch eine Elektro-Fachfirma auszuführen und ist nicht im Lieferumfang des Akustik-Wetterschutzgitters enthalten.

2

- 1 | Rückansicht
- 2 | Schnitt Seitenansicht

Akustik-Wetterschutzgitter WSG/AK

TECHNISCHE ANGABEN

Frostschutzband 65°

Nennspannung:	230 V
Heizleistung:	11 W/m
Installationsleistung:	ca. 110 W/m²
Nenntemperatur:	65°
Schutzgeflecht geerdet:	Kupfer verzinnt
Außenmantel:	Polyolefin
Feuchtigkeitsdicht:	ja
Breite:	11 mm
Dicke:	6 mm
Biegeradius min.:	25 mm
CE-Zeichen:	ja
erf. Vorsicherung Leistungsschalter:	16 A

Anschlussgarnitur

Anschlussgarnitur zur Herstellung eines anschlussfertigen Heizbandes bestehend aus:

Heizbandanschlussstecker					
Heizbandabschlusskupplung					
Anschlussleitung:	2 m				
Feuchtigkeitsdicht:	ja				
CE-Zeichen:	ja				

EINBAURAHMEN/MAUERANKER

Je nach Einbausituation werden auf Anforderung Einbaurahmen und Maueranker mitgeliefert.

ANSCHLUSSHINWEISE

Das Heizbandschutzgeflecht muss an das Schutzleiterpotenzial angeschlossen werden.

Das WSG/AK ist in die Schutzmaßnahme einzubeziehen.

Ein Fehlerstromschutzschalter (FI) ist vorzusehen.

Schutz gegen atmosphärische Überspannung ist zu sichern (allgem. Blitzschutzbestimmung).

VDE und EVU Richtlinien sind einzuhalten.

Installation nur durch Elektro-Fachfirma.

Ausschreibungstext

Akustik-Wetterschutzgitter zum Schutz gegen Regen, zum Schutz gegen das Eindringen von groben Verunreinigungen sowie zur Reduzierung von Geräuschen in Ansaug- und Abluftöffnungen von lufttechnischen Anlagen, hergestellt aus einem stabilen Gehäuse mit waagerecht angeordneten, regenabweisenden und schallabsorbierenden Lamellen.

Material:			
Bauform:			
Farbgebung:	RAL		
Abmessungen:			

(Angaben entsprechend vorgenannter Dokumentation nach Erfordernis auswählen)

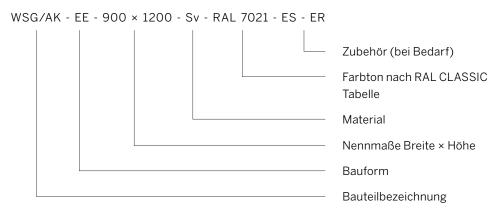
Bei Bedarf

Schutzgitter gegen Vereisung geschützt durch einen elektrischen Einfrierschutz

Heizleistung:	11 W/m
Spannung:	230 V

Einbaurahmen ER, Maueranker

BESTELLBEISPIEL


Akustik-Wetterschutzgitter als Einzel-Einsatzgitter, Größe 900 × 1200, Stahl verzinkt, Oberfläche farblich behandelt mit RAL 7021, mit Einfrierschutz und Einbaurahmen.

BerlinerLuft. Hersteller:

Technik GmbH

Bestellcode: WSG/AK-EE-900×1200-Sv-RAL 7021-ES-ER

TYPENSCHLÜSSEL

ANWENDUNG

Wetterschutzgitter in Schrägdachausführung dienen äußerlich der optischen Abgrenzung und – in Kombination mit einer speziell ausgeführten konstruktiven Gestaltung – der Wasserableitung von Ansaug- oder Ausblasöffnungen lufttechnischer Anlagen in Dachzonen.

KONSTRUKTIVER AUFBAU

Ansaug- oder Ausblasgitter in Schrägdachausführung werden als konstruktive Sonderlösung für den jeweiligen Einsatzfall angeboten. Die sichtbare Gitterfläche und der Wasserauffangkasten bilden eine funktionelle Einheit. Der Wasserauffangkasten ist eine wasserdichte Baugruppe mit einem stabilen angeformten Auflagerahmen, welcher für die Befestigung an den Dachsparren geeignet ist. In diesem Auflagerahmen werden waagerecht angeordnete Lamellen eingebracht, die mit einem Schutzgitter unterlegt sind.

Der Anstellwinkel der Wetterschutzlamellen wird in Abhängigkeit der Dachneigung gewählt um geringe Druckverluste, ein niedriges Strömungsgeräusch und bestmöglichen Sichtschutz zu gewährleisten.

Als Voraussetzung für die Eindichtung am Dach sind seitlich am Auflagerahmen Wasserfalze und unten am Rahmen eine Weichbleischürze angebracht. Der Ausführungstyp richtet sich nach der Dachneigung (Dn) und den Platzverhältnissen im Dachraum.

Die Anbindung der Luftleitung an den Wasserauffangkasten kann individuell, entsprechend der örtlichen Platzverhältnisse, angepasst und ausgeführt werden. Für die Wasserableitung (Bauform A) ist ein Anschlussstutzen 1,5" mit Außengewinde vorgesehen. Im Bedarfsfall können die WSG/SD mit einem Einfrierschutz ausgerüstet werden.

Hinweis

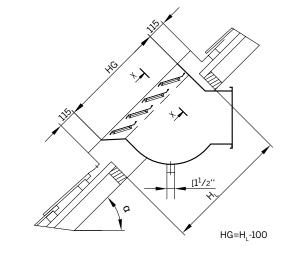
Wetterschutzgitter für Schrägdach bieten keinen Schutz gegen eindringendes Wasser und sind deshalb immer mit einem sicheren Wasserauffang auszurüsten.

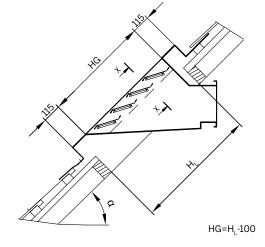
Wetterschutzgitter für Schrägdach

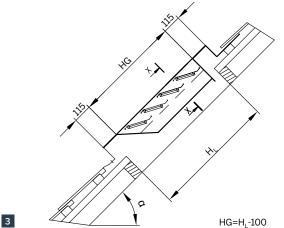
WERKSTOFFE Stahlblech verzinkt Basiswerkstoff: (wahweise Edelstahl oder Aluminium) Schweißnähte: konserviert mit hochwertiger Kaltverzinkung Frontbereich: lackiert nach Angabe RAL 7004 - Signalgrau RAL 7015-Schiefergrau RAL 8004-Kupferbraun RAL 8012-Rotbraun Sonderlackierung Regenschürze: (plissiertes Aluminium) mögliche Farben: RAL 3011 - Braunrot RAL 7021 - Schwarzgrau RAL 8004 - Kupferbraun RAL 8012 - Rotbraun RAL 8017 - Schokoladenbraun RAL 8019 - Graubraun RAL 9005 - Tiefschwarz

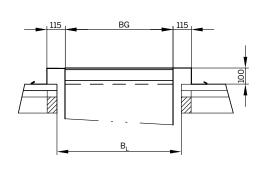
DACHNEIGUNG (α°)

Für die konstruktive Bearbeitung ist die genaue Angabe der Dachneigung erforderlich.


Definition


Die Dachneigung ist der Winkel zwischen Dach und horizontaler Linie des Hauses. Die Angabe erfolgt als Winkel in Grad (°).


BAUFORMEN UND BEZEICHNUNGEN


Bezeichnung	Bauform	Einbauhinweise
WSG / SD - A	А	Einsatz bei Dachneigungen < 40° erforderlich Wasserableitung über integrierten Wasserkasten im Gebäude
WSG / SD - B	В	Einsatz bei Dachneigungen > 40° möglich Wasserableitung durch Selbstauslauf über Dach Wasserkasten mit Regenwasserkante
WSG / SD - C	С	kein Schutz gegen eindringendes Wasser, Sekundärmaßnahmen sind eigenständig vorzunehmen

EINBAUMASSE

- 1 | Bauform A mit Wasserkasten und Wasserablauf nach innen 2 | Bauform B – mit Wasserkasten und Wasserablauf nach außen
- | Bauform C ohne Wasserkasten
- 4 | Schnitt X-X

LEGENDE

lichte Breite (Dachsparren) lichte Höhe (Abstand Wechsel) $\mathsf{B}\mathsf{G}$ B_L -100 = lichte Breite des WSG/SD HG H_L -100 = lichte Höhe des WSG/SD

Dachneigung in Grad

LIEFERBARE ABMESSUNGEN (UNGETEILT)

lichte Breite Gitter (BG) 600 bis 1500 mm

lichte Höhe Gitter (HG) 600 bis 2000 mm

Sonderanforderungen wie ungeteilte Breite mit mehrfach geteilten Wasserkästen werden in Abstimmung mit unserer Konstruktion auf Lieferbarkeit geprüft.

BG=B_L-100

FREIE FLÄCHEN UND MASSEN

Die Angaben zur freien Fläche beziehen sich auf eine Dachneigung von 46° – 55° und sind bei anderen Dachneigungen mit einem Korrekturfaktor zu multiplizieren.

Die Angaben zu den Massen sind Orientierungswerte und müssen in Abhängigkeit der Ausführung des Wasserkastens konkretisiert werden.

Höhe	Angaben für						Breite	B _L [mm]				
H _L [mm]	Dn α 46° – 55°		600	700	800	900	1000	1100	1200	1300	1400	1500
600	fr. Fläche ¹	m²	0,14	0,17	0,20	0,22	0,25	0,28	0,31	0,34	0,36	0,39
	Volumenstrom ²	m³/h	1880	2265	2645	3020	3400	3775	4155	4530	4910	5285
600	Masse Stahl ³	kg	51	54	58	61	65	69	72	76	79	83
	Masse Alu ³	kg	19	20	22	23	24	26	27	28	30	31
000	fr. Fläche ¹	m²	0,17	0,21	0,24	0,28	0,31	0,35	0,38	0,42	0,45	0,49
	Volumenstrom ²	m³/h	2360	2830	3300	3775	4275	4720	5190	5660	6135	6600
800	Masse Stahl ³	kg	64	68	72	76	80	84	88	92	96	100
	Masse Alu ³	kg	24	26	27	29	30	32	33	34	36	37
1000	fr. Fläche¹	m²	0,21	0,25	0,29	0,34	0,38	0,42	0,46	0,50	0,55	0,59
	Volumenstrom²	m³/h	2830	3400	3960	4530	5100	5660	6230	6800	7360	7930
1000	Masse Stahl ³	kg	79	84	88	92	97	101	105	110	114	118
	Masse Alu ³	kg	30	31	33	35	36	38	39	41	43	44
1200	fr. Fläche ¹	m²	0,28	0,34	0,39	0,45	0,50	0,56	0,62	0,67	0,73	0,78
	Volumenstrom ²	m³/h	3775	4530	5285	6040	6800	7550	8300	9060	9820	10570
1200	Masse Stahl ³	kg	99	104	109	113	118	123	127	132	137	141
	Masse Alu ³	kg	37	39	41	43	44	46	48	50	51	53
1400	fr. Fläche ¹	m²	0,31	0,38	0,44	0,50	0,57	0,63	0,69	0,76	0,82	0,88
	Volumenstrom ²	m³/h	4250	5100	5950	6800	7645	8500	9350	10200	11050	11900
1400	Masse Stah ³	kg	118	123	128	133	138	143	148	153	158	163
	Masse Alu ³	kg	44	46	48	50	52	53	55	57	59	61

 $^{^{1}}$ Korrekturfaktoren für freie Flächen und Volumenströme beachten – mit und ohne Einfrierschutz

Hinweis: Die dargestellten Abmessungen und Massen sind lediglich Richtwerte. Verbindliche technische Parameter bei Auslegung auf Anfrage über BerlinerLuft.

 $^{^2}$ Volumenstrom für Dn α = 46° – 55° Dn

³ Masse (Orientierungswert) bezogen auf Standardblechdicken bei Stahl- bzw. Aluminiumausführung (andere Materialien auf Anfrage)

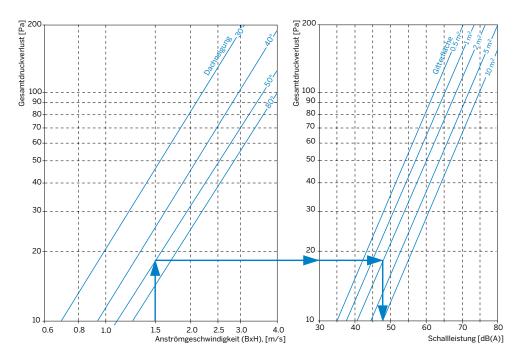
Höhe	Angaben für						Breite	B _L [mm]				
H _L [mm]	Dn α 46° – 55°		600	700	800	900	1000	1100	1200	1300	1400	1500
1000	fr. Fläche¹	m²	0,38	0,46	0,54	0,62	0,69	0,77	0,85	0,92	1,00	1,08
	Volumenstrom²	m³/h	5200	6230	7270	8300	9350	10380	11420	12460	13500	14535
1600	Masse Stahl³	kg	141	146	151	157	162	167	173	178	184	189
	Masse Alu³	kg	53	55	57	59	61	63	65	67	69	71
1800	fr. Fläche ¹	m²	0,42	0,50	0,59	0,67	0,76	0,84	0,92	1,01	1,09	1,17
	Volumenstrom ²	m³/h	5660	6800	7930	9060	10200	11330	12460	13600	14720	15860
1600	Masse Stahl ³	kg	162	167	173	179	185	190	196	202	208	213
	Masse Alu ³	kg	61	63	65	67	69	71	74	76	78	80
2000	fr. Fläche ¹	m²	0,45	0,55	0,64	0,73	0,82	0,91	1,00	1,09	1,18	1,27
	Volumenstrom ²	m³/h	6135	7360	8590	9820	11040	12270	13500	14730	15950	17180
2000	Masse Stahl³	kg	184	191	197	203	209	215	221	227	233	239
	Masse Alu³	kg	69	71	74	76	78	81	83	85	87	90

 $^{^{\, 1}}$ Korrekturfaktoren für freie Flächen und Volumenströme beachten – mit und ohne Einfrierschutz

KORREKTURFAKTOREN FÜR FREIE FLÄCHEN **UND VOLUMENSTROM**

In Abhängigkeit von der Dachneigung sind die in o.g. Tabelle angegebenen freien Flächen und Volumenströme mit dem Korrekturfaktor zu multiplizieren.

Dachneigung (α)	< 30°	30° – 35°	36° – 45°	46° – 55°	56° – 65°	66° – 75°	76° – 80°
Korrekturfaktor (k) ohne ES	auf Anfrage	0,57	0,79	1	1,20	1,31	1,42
Korrekturfaktor (k) mit ES	auf Anfrage	0,48	0,67	0,85	1	1,11	1,21


Hinweis: Die dargestellten Abmessungen und Massen sind lediglich Richtwerte. Verbindliche technische Parameter bei Auslegung auf Anfrage über BerlinerLuft.

² Volumenstrom für Dn α = 46° – 55°

³ Masse (Orientierungswert) bezogen auf Standardblechdicken bei Stahl- bzw. Aluminiumausführung (andere Materialien auf Anfrage)

DRUCKVERLUST UND STRÖMUNGSGERÄUSCH

AUSLEGUNGSBEISPIEL

 B_L = 1000 mm, H_L = 2000 mm, Dachneigung 50° Volumenstrom 11000 m³/h Anströmfläche 2 m², Anströmgeschwindigkeit 1,5 m/s

Diagramm

1,5 m/s → Gesamtdruckverlust 18 Pa → Schallleistung 47 dB/A

WASSERABSCHEIDEGRAD

Schrägdach-Wetterschutzgitter scheiden Niederschläge nicht vollständig ab. Unter Beachtung der Dachneigung und der Möglichkeiten zur Wasserableitung ist die geeignete Bauform (siehe Tabelle Bauformen) zu wählen.

Beim Einsatz der Bauform A wird in der Basisausführung ein Wasserablauf mit 1,5"-Außengewindeanschluss vorgesehen. Je nach Standort ist die anfallende maximal mögliche Regenwassermenge zu berechnen. Im Bedarfsfall wird der Querschnitt des Ablaufs der Wassermenge angepasst.

Beim Einsatz der Bauform B ($\alpha > 40^{\circ}$) ist zur Ableitung des Wassers keine zusätzliche Entwässerung erforderlich.

ZUBEHÖR

Einfrierschutz (ES)

auf Anforderung kann ein elektrisch beheizter Einfrierschutz vorgesehen werden, um im Winter eine Vereisungsgefahr des freien Querschnitts am Ansauggitter zu unterbinden. (siehe Abschnitt ES)

Isolierung Wasserkasten (iso.)

zur Vermeidung von Schwitzwasserbildung durch Taupunktunterschreitung kann der Wasserkasten bei Bedarf isoliert ausgeführt werden.

Revisionsdeckel (RD)

bei Bauform A wird generell eine Revisionsöffnung seitlich am Wasserkasten vorgesehen um Verunreinigungen am Wassereinlauf beseitigen zu können.

Anschluss Luftleitung

seitliche Anschlüsse für Lüftungskanal oder -rohr sind auf Anforderung möglich.

Regenschürze

alle WSG/SD erhalten am unteren Ende des Auflagerahmens eine Regenschürze aus plissiertem Aluminium als lose Beistellung.

EINFRIERSCHUTZ

Bei Temperaturen unter +2 °C und einer Luftfeuchte über 60 % (z. B. Nebel) besteht die Gefahr, dass die Ansauglamellen und Schutzgitter im Ansaugfall vereisen können. Um den Betrieb der lufttechnischen Anlage sicher zu stellen, kann das Schutzgitter des WSG/SD elektrisch beheizt werden. Dazu werden besondere temperatur- und UV-beständige Heizbänder an der Gitterkonstruktion fixiert.

Für die vollautomatische Steuerung des Einfrierschutzes ist ein Eismelder oder eine andere Kombination aus Thermostat und Hygrostat vorzusehen.

Die Auswahl und Installation der Steuereinrichtung ist durch eine Elektro-Fachfirma auszuführen und ist nicht im Lieferumfang des Schrägdach-Wetterschutzgitters enthalten.

TECHNISCHE ANGABEN

Frostschutzband 65°

Nennspannung:	230 V
Heizleistung:	27 W/m
Installationsleistung:	ca. 270 W/m²
Nenntemperatur:	65°
Schutzgeflecht geerdet:	Kupfer verzinnt
Außenmantel:	Polyolefin
Feuchtigkeitsdicht:	ja
Breite:	14 mm
Dicke:	6 mm
Biegeradius min.:	32 mm
erforderliche Vorsicherung Leistungsschalter:	16 A

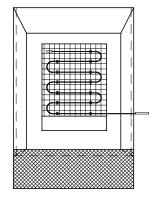
Anschlussgarnitur

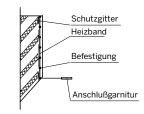
Anschlussgarnitur zur Herstellung eines anschlussfertigen Heizbandes bestehend aus:

Anschlussleitung:	Ölflex classic 110, Länge 2 m, 3 × 1,5 mm Adern zum bauseitigen Auflegen				
Feuchtigkeitsdicht:	ja				
CE-Zeichen:	ja				

Anschlusshinweise

Das Heizbandschutzgeflecht muss an das Schutzleiterpotenzial angeschlossen werden


Das WSG/SD ist in die Schutzmaßnahme einzubeziehen


Ein Fehlerstromschutzschalter (FI) ist vorzusehen

Schutz gegen atmosphärische Überspannung ist zu sichern (allgem. Blitzschutzbestimmung)

VDE und EVU Richtlinien sind einzuhalten

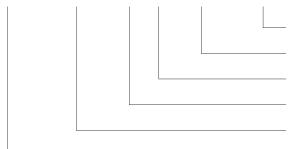
Installation nur durch Elektro-Fachfirma

- 1 | Rückansicht
- 2 | Schnitt Seitenansicht

Ausschreibungstext

WETTERSCHUTZGITTER FÜR SCHRÄGDACH WSG/SD

Wetterschutzgitter für Schrägdach in Bauform A (oder B) bestehend aus einem umlaufenden Auflagerahmen mit waagerecht angeordneten Lamellen und hinterlegtem Schutzgitter sowie einem integrierten Wasserauffangkasten zur Erfassung und Ableitung von Regenwasser. Auflagerahmen so gestaltet, dass damit eine Befestigung der gesamten Baugruppe am Dachsparren möglich ist. Beidseitig vertikal ist ein Wasserfalz angebracht und am unteren Ende des Auflagerahmens ist die Befestigung einer Weichbleischürze vorgesehen.


Zusatzanforderungen

Isolierter Kasten, Revisionsdeckel, Einfrierschutz, Farbgebung im Frontbereich sind im Bedarfsfall nach technischer Dokumentation zu ergänzen bzw. nach Erfordernis zu formulieren.

Die individuellen Einzelheiten zum Dach sind dem Lieferanten zur konstruktiven Bearbeitung des WSG/SD durch den Besteller zu übergeben. Vor Fertigungsbeginn ist eine Freigabe der Konstruktionsdetails durch den Besteller erforderlich.

TYPENSCHLÜSSEL

WSG/SD - 1000 × 1500 - 35° - Sv - RAL 7021 - ES-iso-RD

BESTELLBEISPIEL

Wetterschutzgitter für Schrägdach in Bauform A (oder B)

Nenngröße 1000 × 1500, Dachneigung 35°, Material, Frontseite lackiert RAL 7021, mit Einfrierschutz, Wasserkasten isoliert und mit Revisionsdeckel

Hersteller: BerlinerLuft. Technik GmbH

Bestellcode:

SG/SD-A-1000×1500-35-RAL 7021-ES-iso-RD

Zubehör (bei Bedarf)

Farbton nach RAL CLASSIC Tabelle

Material

Dachneigung

Nennmaße Breite × Höhe

Bauteilbezeichnung

BerlinerLuft. Technik GmbH

Herzbergstraße 87 – 99 D-10365 Berlin

Telefon +49 (0)30 55 26 0
Telefax +49 (0)30 55 26 22 11
E-Mail info@berlinerluft.de

www.berlinerluft.com