

HEATING AND COOLING UNITS

KAT2024/9-ENG

WHY MINIB?

We are a leading European manufacturer of heating and cooling units, exporting to 50+ countries across Europe, Asia, and America. With 25+ years of experience, MINIB is a trusted industry partner.

Our product portfolio includes ultra-silent convectors, fan-coils, and chilled beams for heating, cooling, and ventilation. Take advantage of our expertise and involve us in your project today.

Quality

- Excellence is our priority
- 3-level quality control system
- Independently certified product

Reliability

- More than 25 years of experience
- In-house design and production
- Made in Czech Republic

Customer orientation

- Providing customized solutions
- Flexibility in production
- Short delivery time

Innovations & Development

- Awards and patents
- ISO 9001 certification
- Collaboration with universities

Consultation services

- Our priority is proper system installation
- Personal consultation for optimal solutions

Ecology and Sustainability

- Products suitable for ecological low-heat sources
- 98 % recyclable components
- Enhancing energy efficiency in buildings

As a part of the product development, MINIB, a.s. reserves the right of construction and price adjustments. Copying of catalogue texts or images is possible only with the consent of MINIB, a.s.

Reference projects

KEY BENEFITS OF MINIB CONVECTORS:

Economic and stylish solution for heating, cooling and ventilation

Quality Assurance

- Spot Welding for Strong and Discreet Connections of the stainless steel part
- In house Designed and produced Heat Exchanger
- High pressure Water Inflation to 180 Bar and Multiple Leak Tests

Performance, Ultra Silence and Cooling option

- High quality EC motors and own new fan design with optimized airflow **completely eliminate unwanted operating noise**
- Provides a unique cooling option, providing flexible climate control solutions.
- Microprocessor controlled Controller for Simple Speed Control
- Performance Tested According to EN16430

Customization and Adaptability

- Variable Controller Adjustment for Tailored Fan Speed
- Consultation already during the projecting phase to receive an optimal product in terms of space, function, appearance and price

Trendsetting with Cost-Effective Solutions

- Energy-efficient EC motors
- Maximized Performance Using a Minimal Amount of Heating/Cooling Medium
- Low Operational Costs
- Suitable for Low Temperature Heating Systems

up to 33% higher performance efficiency in glazed areas than radiators

up to **DX** lighter and 3x smaller than traditional radiators at the same power output

up to **SU % lower annual heating costs** using heat pump when compared to panel radiators

up to faster convector response when controlled by thermostat compared to radiators

* source: MINIB laboratory / Study performed on selected types of heating units. It is always necessary to compare specific projects.

WHY TO USE CONVECTORS FOR HEATING?

Maximally efficient customized heating solutions for particular interiors

Convectors use airflow for the heating process. Contrary to other heating systems, they are easy to install. They maintain and offer a great shape variability. Some convector models can be also used for cooling.

Faster heating up of any room

Convectors contain only a small volume of water. Compared to radiators, they can heat up rooms significantly faster, with less energy.

Example of the room heating process: convector vs. radiator

Optimal heat distribution

Contrary to radiators, convectors do not radiate heat into walls, thus allowing for its efficient distribution throughout the room. Thanks to their design and operation mode, they are ideal for use under French windows and large glazed areas.

Airflow - radiator

Airflow - convector

Natural heat circulation

Floor heaters radiate heat from the bottom, thus preventing natural airflow. On the other hand, convectors support natural air circulation, thus contributing to a more even heat distribution in any given space.

Floor heaters

Ideal vertical heat distribution

Convector

EXAMPLES OF AIRFLOW IN THE INTERIOR

trench heater without fan

trench heater with fan - COOLING function

trench heater with fan - HEATING function

free-standing and wall-mounted convector

OVERVIEW OF CONVECTORS AND TABLE OF CONTENTS

n		ion		ial		Conv	ector		
Type	Fan	Functi	Env	Mater	Convector	Width [mm]	Height [mm]	Out [W	put /m]
						243	80	22	21
						243	125	29	97
				Ss	Р	303	80	22	27
						303	120	34	16
						303	125		
	Image: biase in the second								
						420	140	5/	0
			wet						
					TE - elect.				
ERS									
EAT					т				
Ŧ					-				
S									
E E		ß	dry		HT				
		atir		Ss					
		he							
					νT				
					NI				
	_		÷						
	h fa		WB		TO				
	wit								C
						200	110		
		Б			ЦС				792
		olin			пс				
		l c o							
	ting and cooling dry Ss	Ss							
				260	110	1032	357		
		HC 4P	340	110	1589	754			
						340	150	1398	816
						340	185	1442	1204
					HC AIR	356	110	2401	792
					HC 4P AIR	356	110	1589	754

Ss - Stainless steel Zn

- Galvanized steel

AI - Aluminium

cooling

dry environment

wet environment

- Heating

- Cooling

without fan

with fan

Н

С

heat pump

		c		-		Conv	ector		
Type	Fan	Function	Env.	Material	Convector	Width [mm]	Height [mm]	Out [W.	:put /m]
							260	55	58
						120	360	63	
							460	70	
							160	4(
	5		÷			160	260	86	
В	ut fa		WB	\$	000		360	98	
FREE-STANDING	without fan	β	dry or wet	Ss	SPB		460 260	10	92
STAI	8	heating	p			205	360	12	
Ŭ.		Ĕ				205	460		10
Æ							260	12	
						230	360	14	
						200	460	16	
	E					120	260	15	
	with fan		dry	Ss	SKB	160	260	25	
	Ň					205	260	28	
							185	55	
						100	285	63	
							385)5
							185	86	
	fan		/et			140	285	98	
	without fan		dry or wet	Ss	NPB		385		92
8	vith	ting	dry			105	185	11	
INT	_	heating				185	285	12	
WALL-MOUNTED							385 185		10 96
LL-N						210	285	14	
MA						210	385	16	
						100	205		65
					NKB	140	165	25	
	fan		>			185	205	28	
	with fan	,6	dry	Ss				Н	
	>	heating/ cooling			NC	150	395	3553	1012
		he			NC 4P	150	395	1502	885
	w/o fan				ST	330	190	10	84
					SKF PTG	150	318	19	61
					NKF PTG	150	256		89
SPECIAL	E	heating			SD	180	270	19	
SPE	with fan	hea			ND	115	500		66
	Š				KP	272	135	13	
					KZ	91	328	13	58
				neet	SK	286	80	693 / 6	00 mm
9N	with t fan	cooling	dry	see datasheet	СНС	592	216	5046 / 1200 mm	1032 / 1200 mm
CEILING	without fan	heating / cooling			IJ-2P / 4P	592	186	se datas	ee sheet

heating output with heat gradient: 75/65/20 °C - fan speed 2nd cooling output with heat gradient: 7/12/27 °C - fan speed 2nd (sens.)

Our products are subject to continuous development and innovation, ensuring you get the latest in efficiency and performance. For the most up-to-date technical data, always refer to the Toolbox application at mmb.minib.cz or the calculator on our website minib.com.

6 MINIB[®]

TRENCH HEATERS WITHOUT FAN

Example of order code	KPSA	Ρ	243	09	080	21A
Category	Orientation		Nidth	Length	Heig	ght Type

INDIVIDUAL CALCULATION of technical data can be found on our website

P LINE ► TRENCH HEATER WITH NATURAL CONVECTION

CHARACTERISTICS

- body made from high quality stainless steel
- convector without a fan for dry environment
- high natural convection efficiency
- short response time

Orientation: L = left water connection / P = right water connection

									Lengt	h [mm]					
Category	Convector	Orientation	Width [mm]	Height [mm]	09 = 900 [mm]	10 = 1000 [mm]	12 = 1250 [mm]	15 = 1500 [mm]	17 = 1750 [mm]	20 = 2000 [mm]	22 = 2250 [mm]	25 = 2500 [mm]	27 = 2750 [mm]	30 = 3000 [mm]	Туре
							hea	ting outpu	t with heat	t gradient	75/65/20°C	: [W]			
		L/P	243	080	190	221	300	379	458	537	616	695	774	853	21A
		L/P	243	125	255	297	403	509	615	721	827	933	1039	1145	21A
KPSA	Р	L/P	303	080	195	227	308	389	470	551	632	713	794	875	21A
		L/P	303	120	296	346	469	592	716	839	963	1086	1209	1333	21A
		L/P	303	125	336	392	532	672	812	952	1092	1232	1372	1512	41A

PB LINE UNIVERSAL CONSTRUCTION SOLUTION

CHARACTERISTICS

- high natural convection heating power
- stainless steel (PB) body or black coated galvanized steel (PBE) body
- universal right/left design
- wide range of standard widths and heights
- convectors can be connected to joints of any length

Orientation: U = universal left-right water connection

									Lengt	h [mm]					
Category	Convector	Orientation	Width [mm]	Height [mm]	09 = 900 [mm]	10 = 1000 [mm]	[mm]	[mm]	[mm]	[mm]	22 = 2250 [mm] 5/65/20°C [\	[mm]	27 = 2750 [mm]	30 = 3000 [mm]	Туре
		U	200	090	166	194	263	332	401	470	539	609	678	747	21A
		U	200	110	197	230	312	394	476	558	640	722	804	886	21A
		U	200	140	273	319	433	546	660	774	888	1002	1115	1229	41A
		U	260	090	207	242	328	415	501	588	674	761	847	934	21A
		U	260	110	245	286	388	490	592	695	797	899	1001	1103	21A
KPSA	PB/PBE	U	260	140	353	412	559	706	853	1000	1147	1294	1441	1588	41A
KFSA	PD/PDC	U	340	090	276	322	437	552	667	782	897	1012	1127	1242	41A
		U	340	110	328	383	519	656	792	929	1066	1202	1339	1475	41A
		U	340	140	421	491	667	842	1017	1193	1368	1544	1719	1895	81A
		U	420	090	286	334	453	572	691	811	930	1049	1168	1288	41A
		U	420	110	390	455	618	781	943	1106	1268	1431	1594	1756	41A
		U	420	140	544	634	861	1087	1314	1540	1766	1993	2219	2446	81A

The grilles are not part of the convectors, they must be ordered separately. For the grilles see page 13.

PO LINE FOR WET ENVIRONMENT

CHARACTERISTICS

- the body of the convector is made from a high quality stainless steel •
- convector without a fan for dry environment •
- high natural convection efficiency •
- short response time •
- for use in humid / wet environments
- the convector cannot be installed for a swimming pool with salty or otherwise corrosive water

Orientation: L = left water connection / P = right water connection

									Lengt	h [mm]					
Category	Convector	Orientation	Width [mm]	Height [mm]	09 = 900 [mm]	10 = 1000 [mm]	12 = 1250 [mm]	15 = 1500 [mm]	17 = 1750 [mm]	20 = 2000 [mm]	22 = 2250 [mm]	25 = 2500 [mm]	27 = 2750 [mm]	30 = 3000 [mm]	Туре
							hea	ting outpu	it with heat	t gradient	75/65/20°C	[W]			
KPMA	PO	L/P	303	125	336	392	532	672	812	952	1092	1232	1372	1512	41A

/ Convectors placed in humid environment can not come into direct contact with water.

TRENCH HEATERS WITH FAN

TE DIRECT ELECTRICITY CONVECTOR WITH A FAN

WALL-MOUNTED CONVECTORS

CHARACTERISTICS

- direct electricity convector with a fan for 230 V
- high output •
- very short response time
- suitable for interior applications with no hot water supply •
- suitable for wooden interiors and wooden constructions

Orientation: L = left electricity connection / P = right electricity connection

						L	ength (mn.	ŋ]			
Category	Convector	Orientation	Width [mm]	Height [mm]	05 = 500 [mm]	10 = 1000 [mm]	15 = 1500 [mm]	20 = 2000 [mm]	25 = 2500 [mm]	Туре	
	Heating out	out [W]									00
KPSD	TE	L/P	303	125	750	1500	2250	3000	3750	01A	23
	Other techni	cal data									
pressure	ent acoustic e level LAeq, n [dB]	TE	303	125	25,3	26,4	27,5	29,5	30,6		

The grilles are not part of the convectors, they must be ordered separately. For the grilles see page 13.

CHARACTERISTICS

- forced convection unit (heats also when the fan is off)
- high quality stainless steel body
- for installations within limited space
- electronically commutated (EC) motor
- safe voltage 12/24 V DC
- own microprocessor-controlled unit with a wide range of settings
- suitable for heat pumps and other renewable energy sources

Orientation: L = left water connection / P = right water connection

			Width	Height					Lengt	h [mm]					
Category	Convector	Orientation	[mm]	[mm]	09 = 900	10 = 1000	12 = 1250	15 = 1500	17 = 1750	20 = 2000	22 = 2250	25 = 2500	27 = 2750	30 = 3000	Туре
			[11111]	[iiiii]	[mm]										
	Heating out	put with he	at gradient 7	5/65/20°C [W]	-fan spee	ed 2									
		L/P	165	065	395	461	626	791	956	1121	1285	1450	1615	1780	21A
KPSD		L/P	165	125	487	568	771	974	1177	1380	1582	1785	1988	2191	21A
KPSD	'	L/P	243	065	769	897	1217	1537	1858	2178	2498	2819	3139	3459	21A
		L/P	243	080	785	916	1244	1571	1898	2226	2553	2880	3207	3535	21A
	Other techn	ical data													
Equivale	ent acoustic		165	065	23,7	23,8	24,1	24,3	24,6	24,8	25	25,1	26,1	27,1	
	e level LAeq,	т	165	125	23,6	23,9	24,7	25,4	26	26,6	27,1	27,6	28,1	28,6	
	n [dB]	1	243	065	25,9	26	26,2	26,3	26,7	27	27,1	27,2	28,2	29,2	
fan s	speed 2		243	080	25,4	25,8	26,8	27,9	28,7	29,8	30,8	31,9	32,7	33,8	
Input power	- EC motor [W]	Т	165/243	065 /125	6	8	8	12	13	20	20	24	24	32	

HT LINE 🕨

CHARACTERISTICS

- minimal dimensions with very high performance
- forced convection (heats even without the fan on)
- ultra-silent fan our advanced fan construction and new setting of the microprocessor control unit effectively eliminate operating noise
- body made from high quality stainless steel
- electronically commutated (EC) fan optimized for high performance and low vibration
- safe voltage 24 V DC
- control unit with its own microprocessor enabling a wide range of settings
- ideal for low-temperature energy sources

Orientation: L = left water connection / P = right water connection

Category	Convector	Orientation	Width [mm]	Height [mm]	09 = 900 [mm]	10 = 1000 [mm]	12 = 1250 [mm]		ength [mn 17 = 1750 [mm]		22 = 2250 [mm]	27 = 2750 [mm]	30 = 3000 [mm]	Туре
	Heating out	put with hea	at gradient 7	5/65/20°C [W]]-fan spee	ed 2								
KPSD	HT	L/P	185	90	1062	1239	1682	2125	2567	3010	3453	4338	4781	41A
KP3D	пі	L/P	225	90	1541	1798	2440	3082	3724	4366	5008	6292	6934	61A
	Other techn	ical data												
pressure	nt acoustic level LAeq, an speed 2	НT	185 / 225	090	22,4	22,6	23,1	23,6	23,8	23,9	24,7	26,3	27,1	
Input power	- EC motor [W]	HT	185 / 225	090	5	5	7	11	13	13	17	21	24	

The grilles are not part of the convectors, they must be ordered separately. For the grilles see page 13.

KT LINE 🕨

CHARACTERISTICS

- high heating performance of forced convection
- forced convection (heats even without the fan on)
- ultra-silent fan our advanced fan construction and new setting of the microprocessor control unit effectively eliminate operating noise
- body made from high quality stainless steel
- electronically commutated (EC) fan optimized for high performance and low vibration
- safe voltage 24 V DC
- control unit with its own microprocessor
- enabling a wide range of settings
- suitable for heat pumps and other renewable sources energy sources

Orientation: L = left water connection / P = right water connection

			Width	Height						h [mm]					
Category	Heating out	Orientation	[mm]	[mm]	09 = 900		12 = 1250					25 = 2500	27 = 2750		Туре
			[]	[]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
	Heating out	put with he	at gradient 7	/5/65/20°C [W]	-fan spe	ed 2									
		L/P	243	90	828	967	1312	1657	2002	2347	2692	3038	3383	3728	21A
		L/P	243	110	881	1028	1395	1763	2130	2497	2864	3231	3599	3966	21A
KPSD	KT	L/P	243	125	1145	1336	1813	2290	2767	3244	3721	4199	4676	5153	41A
		L/P	303	110	979	1142	1550	1958	2366	2775	3183	3591	3999	4407	21A
	Other techni	L/P	303	125	1272	1484	2014	2545	3075	3605	4135	4665	5195	5725	41A
	Other techn	ical data													
Equivale	ent acoustic		243	090	22,4	22,6	23,1	23,6	23,8	23,9	24,7	25,5	26,3	27,1	
pressure	Other technical da uivalent acoustic ssure level LAeq, KT	KT	243	110 / 125	22,1	22,2	22,5	22,8	23	23,2	24,8	26,3	26,6	26,8	
2m [dB] 1	fan speed 2		303	110 / 125	22,1	22,2	22,5	22,8	23	23,2	24,8	26,3	26,6	26,8	
Input power	- EC motor [W]	KT	243	090/110/125	6	6	10	11	12	16	17	17	22	22	

TO LINE **FOR WET ENVIRONMENT**

CHARACTERISTICS

- can be used in humid / wet environments
- body made from high quality stainless steel
- high forced convection output, heating also when the fan is off
- safe 12 AC voltage
- does not serve as a drain trough
- it is not possible to install it with salt or otherwise aggressive water pools

Orientation: L = left water connection / P = right water connection

	Imm Imm <th></th>														
Category	Convector	leating output with hea TO L/P L/P ther technical data acoustic el LAeq, TO speed 2			09 = 900	10 = 1000	12 = 1250	15 = 1500	17 = 1750	20 = 2000	22 = 2250	25 = 2500	27 = 2750	30 = 3000	Туре
	Convector Orientation Width [mm] Height [mm] 09 = 900 [mm] 10 = 1000 [mm] 12 = 1250 [mm] 15 = 1500 [mm] 17 = 1750 [mm] 20 = 2000 [mm] 22 = 2250 [mm] 25 = 250 [mm] Heating output with heat gradient 75/65/20°C [W]-fan speed 2 Image: Topologic condition Topologiconditicon Topologicon Topolog	[mm]	[mm]	[mm]											
	Heating out	put with he	at gradient 7	5/65/20°C [W]	-fan spee	ed 2									
	то	L/P	243	085	993	1159	1572	1986	2400	2814	3228	3641	4055	4469	21A
KEIVID	10	L/P	303	125	1272	1484	2014	2545	3075	3605	4135	4665	5195	5725	41A
	Other techr	ical data													
		то	243	085	25,4	25,8	26,8	27,9	28,7	29,8	30,8	31,9	32,7	33,8	
	TO L Other technical of Ilent acoustic re level LAeq, T B]fan speed 2	10	303	125	22,1	22,2	22,5	22,8	23	23,2	24,8	26,3	26,6	26,8	
1		то	243	085	34	34	34	69	69	69	103	103	103	137	
Input power	- EC motor [VV]	ng output with hear L / P L / P technical data tic 2 2	303	125	39	39	53	78	92	106	119	133	145	159	
^															

Convectors placed in a humid environment can not come into direct contact with water.

The grilles are not part of the convectors, they must be ordered separately. For the grilles see page 13.

|

WALL-MOUNTED CONVECTORS

CEILING UNITS

REGULATION ELEMENTS

TRENCH HEATERS WIT FAN AND COOLING OPTION

HC LINE ►

CHARACTERISTICS

- for cooling and heating
- high performance of forced convection (heats even when fan is off) •
- stainless steel body
- available in many variants to suit your exact needs •
- electronically commutated (EC) fan optimized for
- high performance and low vibration
- safe voltage 24 V DC
- control unit with its own microprocessor enabling a wide range of settings •
- suitable for heat pumps and other renewable energy sources •
- 4P double-circuit connection the heating and cooling circuit can be used • separately
- AIR with connection to HVAC

Orientation: L = left water connection / P = right water connection

Heating output with heat gradient 75/65/20°C (W)-fan speed 2 (sons.) Local Local <thlocal< th=""> Local Local<</thlocal<>										Lengt	n [mm]					
Cooling output with heat gradient 7/1227* °C (W)-fan speed 2 (sens.) Singleview view leating QR colling fuerties Note that gradient 7/1227* °C (W)-fan speed 2 (sens.) Singleview view leating QR colling fuerties L/P 200 110 1073 1252 1699 2146 2593 3040 3487 3328 4410 5058 5707 6355 7004 L/P 200 110 1556 1816 2464 3113 3761 4410 5058 5707 6355 7004 L/P 3400 110 2568 2401 3258 4116 4133 531 144 155 1818 2906 288 2771 3054 L/P 340 150 799 322 1265 1588 1313 2144 259 299 322 328 4297 4333 1351 1489 L/P 340 150 799 323 1265 1237	tegory	Convector	Orientation												30 = 3000 [mm]	Туре
KPSF L / P 200 110 1073 1252 1699 2146 253 3040 3487 3334 4382 4822 L / P 260 110 400 552 477 631 729 854 980 1106 1231 1355 700 L / P 260 110 405 472 641 809 978 1147 1315 1484 1652 1821 L / P 340 110 2058 2401 3258 4116 4973 5831 6688 7546 8403 9261 L / P 340 150 799 932 1265 1588 1931 2264 2962 3282 2982 3262 3989 3974 3351 1663 11842 1305 L / P 340 185 1052 1228 1666 2105 2543 3244 3611 398 3161 398 3161 3866 1103		• •	•			•	ns.)									
KPSF L P 200 110 302 352 477 603 729 854 980 1106 1231 1355 L L P 260 110 405 472 603 729 854 980 1106 1231 1355 700 6555 700 6555 700 6555 700 6555 700 6555 700 6555 700 6555 700 6555 700 6555 700 6555 700 6555 700 6555 700 6555 700 6555 700 6515 8131 1147 1315 1484 1652 1232 1305 1205 1205 1205 1598 1311 2064 2596 2202 3262 3592 1400 180 11842 1305 1432 1403 1351 14184 1305 1315 1143 1351 1148 1305 13151 1101 1305 140					single	-circuit co	nvector v	with heat	ing OR co	oling fu	nction					
KPSF L / P 260 110 1556 1816 2464 3113 3761 4410 5058 5707 6355 7004 KPSF L / P 340 110 2058 472 641 809 978 1147 1315 1484 1652 1821 L / P 340 110 2058 2401 3258 4116 4973 5831 6688 7546 8003 9261 L / P 340 150 799 932 1265 1598 1931 2264 2590 2062 3593 3512 1482 1305 L / P 340 185 1052 1228 1666 2105 2543 2982 3420 3512 1439 MC 4P 240 185 1052 1228 1666 2105 2543 2982 3420 3611 3986 L / P 340 110 1362 1598 1402 1562 1331 <td></td> <td></td> <td>L/P</td> <td>200</td> <td>110</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4829</td> <td>41A</td>			L/P	200	110										4829	41A
KPSF HC L / P 340 110 2058 2401 3258 4116 4973 5831 6688 7546 8403 9261 L / P 340 150 792 1075 1357 1640 1923 2206 2488 2771 305/ L / P 340 150 799 3932 1266 1598 1311 2264 2586 2292 3262 3592 3591 1668 764 44973 311 2264 2586 2292 3262 3592 3592 1055 1598 1311 2264 2586 2929 3262 3593 4592 1562 1598 1313 10756 12133 13512 1489 1489 1490 1706 2137 2566 2929 3263 3611 3980 1365 1374 668 996 1123 1251 1375 1375 1489 1312 1251 1375 1362 1364 1364			L/P	260	110	1556	1816	2464	3113	3761	4410	5058	5707	6355	7004	41A
KPSE L/P 340 150 799 932 1265 1598 1931 2264 2596 2929 3262 3595 L/P 340 185 3309 3860 5239 6618 7997 9375 10756 1213 13512 1489 colspan="4">colspan="4" colspan="4">colspan="4" colspan="4" colspan="4">colspan="4" colspan="4" colsp	PSF	HC	L/P	340	110	2058	2401	3258	4116	4973	5831	6688	7546	8403	9261 3054	81A
krst L/P 340 185 1052 1228 1666 2105 2543 2982 3420 3859 4297 4736 complexe circuit convector with heating AND coling function L/P 260 110 884 1032 1400 1769 2137 2506 2874 3243 3611 3980 L/P 260 110 884 1032 1400 1769 2137 2506 2874 3243 3611 3980 L/P 340 110 1362 1589 2156 2723 3291 3858 4425 4933 5560 6128 L/P 340 150 1664 754 1023 1293 1562 1831 2101 2370 2663 2994 4944 4944 5395 L/P 340 185 1236 1442 1957 2472 2987 3502 4017 4532 5047 5562 1032 1204			L/P	340	150										13050 3595	C1A
$ \begin{tabular}{ c c c c c c c } & L/P & 260 & 110 & 884 & 1032 & 1400 & 1769 & 213 & 2506 & 2874 & 3243 & 3611 & 3980 \\ \hline L/P & 340 & 110 & 1362 & 1589 & 2156 & 2723 & 3291 & 3858 & 4425 & 4993 & 5560 & 6126 \\ \hline L/P & 340 & 150 & 646 & 754 & 1023 & 1293 & 1562 & 1831 & 2101 & 2370 & 2639 & 2906 \\ \hline L/P & 340 & 150 & 1198 & 1398 & 1898 & 2397 & 2896 & 3396 & 3895 & 4394 & 4894 & 5393 \\ \hline L/P & 340 & 150 & 198 & 1107 & 1398 & 1689 & 1981 & 2272 & 2563 & 2854 & 3146 \\ \hline L/P & 340 & 185 & 1204 & 1633 & 2063 & 2493 & 2923 & 3553 & 3783 & 4213 & 4642 \\ \hline L/P & 340 & 185 & 1032 & 1204 & 1633 & 2063 & 2493 & 2923 & 3353 & 3783 & 4213 & 4642 \\ \hline e e e e e e e e e e e e e e e e e e$			L/P	340	185										14890 4736	G1A
KPSE L / P 260 110 306 357 485 613 740 868 996 1123 1251 1376 KPSE L / P 340 110 1362 1589 2156 2723 3291 3858 4425 4993 5560 6126 L / P 340 150 646 754 1023 1293 1562 1831 2101 2370 2639 2906 L / P 340 150 699 816 1107 1398 1689 1981 2272 2563 2854 3146 L / P 340 185 1236 1442 1957 2472 2987 3502 4017 4532 5047 5562 VPSH HC AIR L / P 356 110 2058 2401 3259 4116 4974 5831 6689 7546 8404 9261 KPSH HC AIR L / P 356 110 2058					double-	circuit co	nvector w	vith heati	ng AND d	cooling fu	inction					
$ \begin{tabular}{ c c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			L/P	260	110										3980 1378	61A
KPSE HC 4P L / P 340 150 1198 1398 1898 2397 2896 3396 3895 4394 4894 5393 L / P 340 150 699 816 1107 1398 1689 1981 2272 2563 2854 3146 L / P 340 185 1236 1442 1957 2472 2987 3502 4017 4532 5047 5562 1032 1204 1633 2063 2493 2923 3353 3783 4213 4642 KPSH HC AIR L / P 356 110 2058 2401 3259 4116 4974 5831 6689 7546 8404 9261 KPSH HC AIR L / P 356 110 2058 2401 3259 4116 4974 5831 6689 7546 8404 9261 KPSH HC AIR L / P 356 110			L/P	340	110	1362	1589	2156	2723	3291	3858	4425	4993	5560	6128 2908	81A
Image: height state L / P 340 185 1236 1442 1957 2472 2987 3502 4017 4532 5047 5562 1032 1204 1633 2063 2493 2923 3353 3783 4213 4642 KPSH HC AIR L / P 356 110 2058 2401 3259 4116 4974 5831 6689 7546 8404 9261 KPSH HC AIR L / P 356 110 2058 2401 3259 4116 4974 5831 6689 7546 8404 9261 KPSH HC AIR L / P 356 110 2058 2401 3259 4116 4974 5831 6689 7546 8404 9261 KPSH HC AIR L / P 356 110 2058 2156 2723 3291 3858 4425 4993 5560 6128 KPSG HC 4P AIR L / P	(PSE	HC 4P	L/P	340	150	1198	1398	1898	2397	2896	3396	3895	4394	4894	5393 3146	C1A
single-circuit convector with heating OR cooling function AND ventilation KPSH HC AIR L / P 356 110 2058 2401 3259 4116 4974 5831 6689 7546 8404 9261 KPSH HC AIR L / P 356 110 2058 2401 3259 4116 4974 5831 6689 7546 8404 9261 double-circuit convector with heating AND cooling function AND ventilation KPSG HC 4P AIR L / P 356 110 1362 1589 2156 2723 3291 3858 4425 4993 5560 6128 KPSG HC 4P AIR L / P 356 110 1362 1589 2156 2723 3291 3858 4425 4993 5560 6128 Other technical data Equivalent acoustic pressure level LAeq, AlB version 200/260 110 22,4 22,6 23,1 23,6 23,8 23,9 24,7 25,5			L/P	340	185	1236	1442	1957	2472	2987	3502	4017	4532	5047	5562 4642	G1A
KPSH HC AIR L / P 356 110 2058 2401 3259 4116 4974 5831 6689 7546 8404 9261 double-circuit convector with heating AND cooling function AND ventilation KPSG HC 4P AIR L / P 356 110 1362 1589 2156 2723 3291 3858 4425 4993 5560 6126 KPSG HC 4P AIR L / P 356 110 1362 1589 2156 2723 3291 3858 4425 4993 5560 6126 Other technical data Equivalent acoustic pressure level LAeq, AIB version 200/260 110 22,4 22,6 23,1 23,6 23,8 23,9 24,7 25,5 26,3 27,7				sind	ale-circuit o		-									
KPSG HC 4P AIR L / P 356 110 1362 1589 2156 2723 3291 3858 4425 4993 5560 6126 KPSG HC 4P AIR L / P 356 110 1362 1589 2156 2723 3291 3858 4425 4993 5560 6126 Other technical data 200/260 110 22,4 22,6 23,1 23,6 23,8 23,9 24,7 25,5 26,3 27,1 Equivalent acoustic pressure level LAcq, or other technical data HC / HC 4P/ AIR version 340/356 (AIR) 110/150 32,6 33,2 34,7 34,8 35,9 36,1 36,3 36,5 36,7 36,5	2001		1.15		•			•		1			7546	8404	9261	04.4
KPSG HC 4P AIR L / P 356 110 1362 1589 2156 2723 3291 3858 4425 4993 5560 6128 Other technical data Contract of the response of the	PSH	HC AIR	L/P	356	110	679	792	1075	1357	1640	1923	2206	2488	2771	3054	81A
KPSG HC 4P AIR L / P 356 110 646 754 1023 1293 1562 1831 2101 2370 2639 2908 Other technical data Equivalent acoustic pressure level LAcq, or Objective HC / HC 4P/ AIR version 200/260 110 22,4 22,6 23,1 23,6 23,8 23,9 24,7 25,5 26,3 27,1				doub	le-circuit c	onvector v	with heat	ing AND	cooling f	unction A	ND vent	ilation				
Other technical data Equivalent acoustic pressure level LAeq, or function HC / HC 4P/ AIR version 200/260 110 22,4 22,6 23,1 23,6 23,9 24,7 25,5 26,3 27,1	PSG	HC 4P AIR	L/P	356	110										6128 2908	81A
Equivalent acoustic pressure level LAeq, AlB version 200/260 110 22,4 22,6 23,1 23,6 23,8 23,9 24,7 25,5 26,3 27,1	(Other technic:	al data			010	704	1020	1200	1002	1001	2101	2070	2000	2000	
HC / HC 4P/ AlR version 340/356 (AIR) 110/150 32,6 33,2 34,7 34,8 35,9 36,1 36,3 36,5 36,7 36,8				200/260	110	22,4	22,6	23,1	23,6	23,8	23,9	24,7	25,5	26,3	27,1	
2m dB fan speed 2 210 240 195 24.9 25.0 25.5 26.0 27.0 29.0 29.2 29.5 29.9 20.0	, pressure	level LAeq,		340/356 (AIR)	110/150										36,9	
	2m [dB] fa	an speed 2	All version	340	185	34,8	35,0	35,5	36,0	37,0	38,0	38,3	38,5	38,8	39,0	
HC/HC4P/ 200/260 110 6 7 8 11 13 15 18 20 22 24				200/260	110	6	7	8	11	13	15	18	20	22		
put power - EC motor [W] All version 340 110/150 16 27 24 40 54 48 72 81 77 99	ıt power ·	- EC motor [W]													99 168	

The grilles are not part of the convectors, they must be ordered separately. For the grilles see page 13.

TRENCH HEATERS WITH AIR SPIGOT FOR CONNECTION TO HVAC

We are able to produce air spigot of any shape and dimensions according to customer requirements for most of our standard convectors, ensuring fresh air supply and healthy ventilation.

illustrative picture about possible design of air spigot

POSSIBLE ANGLES AND ARCS OF TRENCH HEATERS

ANGLE TYPE OF CONNECTION

ARC TYPE OF CONNECTION

For atypical convectors please contact your sales representative

GRILLES PROFILES

Standard grilles are transverse. If you are interested in LONGITUDINAL GRILLES, please contact your sales representative.

MATERIALS AND COLOURS

silver

stainless steel

(shades of the grilles are only illustrative)

The standard delivery of trench heaters includes convector, standard frame and anchoring accessories. The type and colour of the frame and grille must be specified. The grille must be ordered separately.

* Wooden grilles are supplied in an unfinished, untreated state. We recommend treating them prior to use for both heating and cooling.

FRAMES FOR TRENCH HEATERS

Standard frame (AL-aluminium)

• Covering frame (AL-aluminium)

example with AL grille

* width of the convector = width of the frame / length of the convector = length of the frame

• WOOD - ROLLING / STABLE* - SPARSE

In case of wet environment, please let us know when you order.

FREE-STANDING CONVECTORS

Example of order code

INDIVIDUAL CALCULATION of technical data can be found on our website.

同時受死之间。	
GARLE-MA	
Az CALLER	
· [2] 전 11 [1] [1] [1] [1] [1] [1] [1] [1] [1]	

SPB ► FREE-STANDING CONVECTORS WITHOUT A FAN

CHARACTERISTICS

- convector with natural convection for floor installation
- clean, timeless design in any RAL colour shade
- high heating power of natural convection (compared to conventional heaters)
- construction in stainless steel or galvanised sheet metal with internal black paintwork
- wide range of dimensions
- installation possible without construction preparation
- higher efficiency than floor convectors
- suitable for use in front of glazed areas due to low height
- environmentally friendly alternative to a radiator

			Orientation	Oriontation	Orientation					Lengt	h [mm]														
Category	Convector	Width [mm]		Height [mm]	09 = 900 [mm]	10 = 1000 [mm]	12 = 1250 [mm]	15 = 1500 [mm]-	17 = 1750 [mm]	20 = 2000 [mm]	Туре														
	Heating outpu	t with heat gra	adient 75/65/20°C	[W]																					
				260	492	558	722	886	1050	1214															
			120	360	561	636	823	1010	1197	1384	21C4XA 1) 21C4XD														
		L/P		460	622	705	913	1120	1327	1535	210470														
					160	360	408	528	648	768	888	21C4XA 1) 21C4XD													
			160	260	762	864	1118	1372	1626	1880															
				360	869	985	1274	1564	1853	2143	41C4XA 1) 41C4XD														
KSSA	SPB			460	963	1092	1413	1734	2055	2376	410470														
								260	986	1117	1445	1774	2102	2431											
																						205	360	1122	1272
				460	1244	1410	1825	2240	2655	3069	010470														
				260	1143	1296	1677	2058	2439	2820															
		230	360	1303	1477	1911	2346	2780	3215	61C4XA 1) 61C4XD															
				230	200	460	1444	1637	2118	2600	3081	3563	0164AD												

Orientation: L = left water connection / P = right water connection

1) A = convector ready for ELECTROTHERMIC HEAD inside or WITHOUT HEAD

 $\ensuremath{\text{D/0}}\xspace = \ensuremath{\text{convector}}\xspace$ ready for THERMOSTATIC HEAD outside at the front of convector.

CUSTOMER HEAD - must always be approved in advance!

The decorative grille must not be exposed to weight load or covered.

SKB ► FREE-STANDING CONVECTORS WITH A FAN

Orientation: L = left water connection / P = right water connection

CHARACTERISTICS

- high heating power of forced convection (heats even without fan on)
- stainless steel body
- minimalist design with a focus on high reliability
 electronically commutated (EC) fan optimised for quiet
- operation • safe voltage 12 V DC
- proprietary microprocessor-based control unit allowing a wide range of settings
- suitable for heat pumps and other renewable energy sources

						,	Lengtl	ו [mm]	,				
Category	Convector	Orientation	Width [mm]	Height [mm]	09 = 900 [mm]	10 = 1000 [mm]	12 = 1250 [mm]	15 = 1500 [mm]-	17 = 1750 [mm]	20 = 2000 [mm]	Туре		
Heating output with heat gradient 75/65/20°C [W]-fan speed 2													
			120	260	1345	1565	2116	2667	3218	3769	41C4XA		
kssd SK	SKB	L/P	160	260	2153	2507	3389	4272	5154	6037	41C4XA		
			205	260	2420	2792	3723	4653	5584	6515	81C4XA		
	Other technica	al data											
	ent acoustic	OKD	120	260	32,1	32,5	33,5	34,5	35	35,5			
	e level LAeq, fan speed 2	SKB	160/205	260	27	27,4	28,4	29,4	29,9	30,4			
Innut nouvo	r EC motor [\\/]	motor [W] SKB	120	260	3	3	4	5	7	8			
mput powe	nput power - EC motor [W]		I SKB	160/205	260	3	3	4	6	7	8		

COLOUR OPTIONS

Standard colour combinations:

ŀ	Anodized grille	Pa	ainted body
Code	Colour	Code	Colour
2G	Black - elox	4A	Black
2A	Siler - elox	4C	Silver
2B	Light bronze - elox	4D	Light bronze
2F	White - RAL	4B	White
2X	any other - RAL	4X	any other - RAL

 Λ The decorative grille must not be exposed to weight load or covered.

WALL MOUNTED CONVECTORS

Example of order code

INDIVIDUAL CALCULATION of technical data can be found on our website.

NPB ► WALL MOUNTED CONVECTORS WITHOUT FAN

CHARACTERISTICS

- convector with natural convection for wall mounting
- clean, timeless design in any RAL colour shade
- high heating power of natural convection (compared to conventional heaters)
- stainless steel construction
- wide size range
- can be installed without construction preparation
- higher efficiency than floor convectors
- environmentally friendly alternative to a radiator

		Orientation						Lengtl	n [mm]			
Category	Convector		Width Height [mm] [mm]	Height [mm]	09 = 900 [mm]	10 = 1000 [mm]	12 = 1250 [mm]	15 = 1500 [mm]-	17 = 1750 [mm]	20 = 2000 [mm]	Туре	
	Heating output with heat gradient 75/65/20°C [W]											
				185	492	558	722	886	1050	1214		
			100	285	561	636	823	1010	1197	1384	21C4XA 1) 21C4XD	
				385	622	705	913	1120	1327	1535	2104AD	
			140	185	762	864	1118	1372	1626	1880		
				285	869	985	1274	1564	1853	2143	41C4XA 1) 41C4XD	
1/210.4	NDD			385	963	1092	1413	1734	2055	2376	110 1/12	
KNSA	NPB	L/P		185	986	1117	1445	1774	2102	2431		
			185	285	1122	1272	1646	2020	2394	2768	81C4XA 1) 81C4XD	
				385	1244	1410	1825	2240	2655	3069	010470	
				185	1143	1296	1677	2058	2439	2820		
		210	285	1303	1477	1911	2346	2780	3215	61C4XA 1) 61C4XD		
					385	1444	1637	2118	2600	3081	3563	0104/0

Orientation: L = left water connection / P = right water connection

1) A = convector ready for ELECTROTHERMIC HEAD inside or WITHOUT HEAD

D/0 = convector ready for THERMOSTATIC HEAD outside at the front of convector.

CUSTOMER HEAD - must always be approved in advance!

The decorative grille must not be exposed to weight load or covered.

NKB WALL MOUNTED CONVECTORS WITH A FAN

CHARACTERISTICS

- high heating power of forced convection (heats even without • fan on)
- stainless steel body
- minimalist design with a focus on high reliability
 - electronically commutated (EC) fan optimised for quiet operation safe voltage 12 V DC
- proprietary microprocessor-based control unit allowing •
- a wide range of settings
- suitable for heat pump and other renewable energy sources

			Width	Height [mm]			Lengtl	n [mm]			1
Category	Convector	Orientation	[mm]		09 = 900 [mm]	10 = 1000 [mm]	12 = 1250 [mm]	15 = 1500 [mm]-	17 = 1750 [mm]	20 = 2000 [mm]	Туре
	Heating outpu	t with heat gra	ndient 75/65/20°C	[W]-fan speed 2							
		L/P	100	205	1345	1565	2116	2667	3218	3769	41C4XA
KNSD	NKB		140	165	2153	2507	3389	4272	5154	6037	41C4XA
			185	205	2420	2792	3723	4653	5584	6515	81C4XA
	Other technic	al data									
	ent acoustic		100	205	32,1	32,5	33,5	34,5	35	35,5	
	e level LAeq,] fan speed 2	NKB	140/185	165/205	27,0	27,4	28,4	29,4	29,9	30,4	
1			100	205	3	3	4	5	7	8	
Input powe	- EC motor [W]	NKB	140/185	165/205	3	3	4	6	7	8	

•

WALL MOUNTED CONVECTORS WITH A FAN NC 🕨 AND COOLING OPTION

- for heating and cooling
- high forced convection performance (heats even without the fan on)
- stainless steel construction
- safe voltage 24 V DC
- microprocessor-controlled unit allowing a wide range of settings
- suitable for heat pump and other renewable energy sources
- electronically commutated (EC) fan optimized for quiet operation
- modern design, any RAL colour •
 - quiet operation
- easy installation without complicated construction preparations
- with aluminium or integrated grille
- ideal replacement for a radiator

		Orientation	Width	llaisht			Lengtl	n (mm)			
Category	Convector	Orientation	(mm]	Height [mm]	09 = 900 [mm]	10 = 1000 [mm]	12 = 1250 [mm]	15 = 1500 [mm]-	17 = 1750 [mm]	20 = 2000 [mm]	Туре
			s	ingle-circuit c	onvector wit	h a function of	f heating OR c	ooling			
	• •	ith heat gradie ith heat gradieı									
KNSF	NC	L/P	150	395	3086	3553	4722	5891	7060	8228	81C4XA
KINGI	NC	L/1	150		879	1012	1345	1678	2011	2343	0104//A
			da	uble-circuit c	onvector with	a function of	heating AND	cooling			
		ith heat gradie ith heat gradieı									
KNSE	NC 4P	L/P	150	395	1305	1502	1996	2491	2985	3479	81C4XA
RNSL	110 41	L/I	150	555	769	885	1177	1468	1759	2051	0104//A
Ot	her technical d	ata									
, pressure	nt acoustic level LAeq, an speed 2	NC / NC 4P	150	395	32,5	33,1	34,6	34,7	35,7	35,7	
Input power	- EC motor [W]	NC / NC 4P	150	395	24	27	32	36	54	50	

•

CEILING UNITS

REGULATION ELEMENTS

SPECIAL CONVECTORS

BASED ON OUR CUSTOMERS' INDIVIDUAL PREFERENCES, WE CAN MANUFACTURE A WIDE RANGE OF CUSTOM PRODUCTS TO MEET ANY SPECIFIC NEEDS.

WHATEVER SHAPE YOU ARE LOOKING FOR...WE CAN PROVIDE SOLUTION!

delivery time as agreed with your sales representative

EXAMPLES OF SPECIAL REQUEST CONVECTORS

ST ► STEP CONVECTORS WITH ROBUST STEEL CONSTRUCTION

CHARACTERISTICS

- convector with easy installation and possibility to be placed under window
- benefits of high output due to optimal natural airflow
- robust steel construction

								Lengtl	ו [mm]				
Convector	Orientation	Width [mm]	Height [mm]	09 = 900 [mm]	10 = 1000 [mm]	12 = 1250 [mm]	15 = 1500 [mm]	17 = 1750 [mm]	20 = 2000 [mm]	22 = 2250 [mm]	25 = 2500 [mm]	27 = 2750 [mm]	30 = 3000 [mm]
Heating d	output with h	ieat gradient	75/65/20°C [\	N]									
ST	L/P	330	190	949	1084	1423	1762	2101	2440	2779	3117	3456	3795

delivery time as agreed with your sales representative

SKF/ NKF PTG ► CONVECTORS WITH THERMOELECTRIC GENERATOR

SKF PTG - FREE-STANDING CONVECTOR WITH A FAN AND THERMOELECTRIC GENERATOR

CHARACTERISTICS

silent operation

- WITHOUT THE NEED OF A POWER SUPPLY
- electronically commutated (EC) motor •
- suitable for interior applications where no power • supply is available
- high forced convection output
 - rapid room heating
 - suitable for heat pump and other renewable energy sources

•

			Height [mm]			Length	Length [mm]		
Convector	Orientation	Width [mm]		09 = 900 [mm]	10 = 1000 [mm]	12 = 1250 [mm]	15 = 1500 [mm]-	17 = 1750 [mm]	20 = 2000 [mm]
Heating of Heating of Heating of Heating of Heating	output with	heat gradie	ent 75/65/2	20°C [W]-f	an speed 2	2			
SKF PTG	L/P	150	318	1112	1289	1730	2172	2613	3054
Dther tec	hnical data								
Equivalent acoustic pressure level LAeq, 2m [dB] fan speed 2	SKF PTG	150	318	22,4	22,6	23,1	23,6	23,8	23,9
				delivery	/ time as a	greed with	n your sale	es represe	ntative

NKF PTG - WALL-MOUNTED CONVECTOR WITH A FAN AND THERMOELECTRIC GENERATOR

SD / ND► DESIGN CONVECTORS WITH HIGH OUTPUT & TIMELESS DESIGN

CHARACTERISTICS

- the front panel is made of brushed stainless steel or painted in high gloss, placed in a solid wood frame
- electronically commutated (EC) motor
- high forced convection output
- heating unit with short response time

SD – DESIGN FREE-STANDING CONVECTOR

rapid room heating

- low electricity consumption
- safe 12V DC voltage
- contains own microprocessor controlled unit
- suitable for heat pump and other renewable energy sources

		Width	Height		Length [mm]							
Convector	Orientation	Width [mm]	Height [mm]	10 = 1000 [mm]	12 = 1250 [mm]	15 = 1500 [mm]-	17 = 1750 [mm]	20 = 2000 [mm]				
Heating output with heat gradient 75/65/20°C [W]-fan speed 2												
SD	L/P	180	270	1961	2662	3363	4063	4764				
Other te	echnical da	ata										
Equivalent acoustic pressure level LAeq, 2m [dB] fan speed 2	SD	180	270	27,4	28,4	29,4	29,9	30,4				
Input power - EC motor [W]	SD	120	260	3	4	6	7	8				

delivery time as agreed with your sales representative

ND - DESIGN WALL-MOUNTED CONVECTOR

			Height		L	.ength [mm]						
Convector	Orientation	Width [mm]	Height [mm]	10 = 1000 [mm]	12 = 1250 [mm]	15 = 1500 [mm]-	17 = 1750 [mm]	20 = 2000 [mm]					
Heating output with heat gradient 75/65/20°C [W]-fan speed 2													
ND	L/P	115	500	1542	2059	2577	3094	3612					
Other te	echnical da	ta											
Equivalent acoustic pressure level LAeq, 2m [dB] fan speed 2	ND	115	500	33,1	34,6	34,7	35,7	35,9					
Input power - EC motor [W]	ND	115	500	27	32	36	54	54					

delivery time as agreed with your sales representative

KP ► WINDOWSILL CONVECTOR WITH A FAN

CHARACTERISTICS

- suitable for use in windowsills according to the given dimensions •
- high heating output of the forced convection
- . rapid room heating
- heating also when the fan is off
- low electricity consumption
- safe 24V DC voltage •
- contains own microprocessor-controlled unit
- suitable for heat pump and other renewable energy sources •
- electronically commutated (EC) motor

					Length	n [mm]	
Convector	Orientation	Width [mm]	Height [mm]	09 = 900 [mm]	10 = 1000 [mm]	12 = 1250 [mm]	15 = 1500 [mm]-
Heating outpu	t with heat g	radient 75/65	/20°C [W]-fa	n speed 2			
KP	L/P	272	135	1133	1322	1794	2267
Other technic	al data						
Equivalent acoustic pressure level LAeq, 2m [dB] fan speed 2	KP	272	135	22,7	22,9	23,4	23,9
Input power - EC motor [W]	KP	272	135	4	4	6	8

delivery time as agreed with your sales representative

KZ ► BUILT-IN CONVECTOR FOR INSTALLATION IN WALLS WITH FACE PANEL 💽 🐄

CHARACTERISTICS

- for use in spaces with low build-in depth
- suitable for interiors with increased esthetic demands
- provides increased user comfort •
- high heating output of the forced convection •
- rapid room heating •
- heating also when the fan is off •
- low electricity consumption •
- safe 12V DC voltage
- contains own microprocessor-controlled unit •
- suitable for heat pump and other renewable energy sources
- electronically commutated (EC) motor

SPECIAL CONVECTORS

CEILING UNITS	

Convector	Orientation	(mm)	(mm)	09 = 900 [mm]	10 = 1000 [mm]	12 = 1250 [mm]	15 = 1500 [mm]-	17 = 1750 [mm]	20 = 2000 [mm]
Heating outp	ut with heat g	radient 75/65	/20°C [W]-fa	n speed 2					
KZ	L/P	91	328	1164	1358	1843	2328	2813	3298
Other technic	cal data								
Equivalent acoustic pressure level LAeq, 2m [dB] fan speed 2	KZ	91	328	22,7	22,9	23,4	23,9	24,1	24,3
Input power - EC motor [W	KZ	91	328	4	4	6	8	9	10

delivery time as agreed with your sales representative

The technical parameters are set according to the standards EN 442 and EN16430. In fact, they may vary depending on the location of the convector, the cover grille, the connection type.

HEAT PUMF

READY

WALL-MOUNTED CONVECTORS

SK ► PLINTH CONVECTOR WITH A FAN WITH A HIGHT OF 80 MM

CHARACTERISTICS

- for multi-purpose use in kitchen counters, steps, wainscoting in bathrooms, hall, closets and other similar areas
- high forced convection output
- rapid room heating
- low electricity consumption
- safe 24V DC voltage
- inlet/outlet are at the front of unit
 contains own microprocessor-col
 - contains own microprocessor-controlled unit
- suitable for heat pump and other renewable energy sources
- electronically commutated (EC) motor

		Width	Height	Length [mm]					
Convector	Orientation	[mm]	[mm]	600					
Heating output with heat gradient 75/65/20°C [W]-fan speed 2									
SK	L/P	286	80	693					
Other technical data									
Equivalent acoustic pressure level LAeq, 2m [dB] fan speed 2	SK	286	80	22,7					
Input power - EC motor [W]	SK	286	80	4					
delivery time as agreed with your sales representative									

delivery time as agreed with your sales representative

illustrative photo of SK convector

CEILING CONVECTORS

CHC SPECIAL CEILING CONVECTOR WITH A FAN FOR HEATING AND COOLING

CHARACTERISTICS

- high forced convection output
- rapid room heating and cooling
- low electricity consumption
- safe 12V DC voltage
- designed also for cooling
- electronically commutated (EC) motor
- suitable for wet cooling

Convector			Width [mm]	Height [mm]	Length [mm]					
		Orientation			600	1200	1800	2400		
	Heating output with heat gradient 75/65/20°C [W]-fan speed 2									
	Cooling outpu	t with heat g	radient 7/12/2	27 °C [W]-fan	speed 2 (s	ens.)				
	0110		500	010	2190	5046	7902	10758		
CHC	L/P	592	216	448	1032	1616	2200			
	Other technic	al data								
pre	uivalent acoustic essure level LAeq, n [dB] fan speed 2	СНС	592	216	36,4	37,8	39,3	40,2		
Input	oower - EC motor [W]	CHC	592	216	4	12	18	25		

delivery time as agreed with your sales representative

The technical parameters are set according to the standard EN 15116. In fact, they may vary depending on the location of the unit and the connection type.

TRENCH HEATERS

FREE-STANDING CONVECTORS

CHILLED BEAM

Download chilled beam catalogue

IJ-2pipe / IJ-4pipe suspended ceilings / visible installation

visible installation

444mm

228 mm

CHARACTERISTICS

- specially developed for high • cooling and heating outputs
- very high level of comfort •
- does not contain fan, silent operation
- ideal for installation in ceiling
- optimisation of air flow by adjustable slats
- minimum maintenance requirements
- low operating cost

secondar air

allows for non-standard design according to the customer's requirements

secondary

air

close-up view of the nozzle position

DIMENSIONS

width

height

lenght

suspended ceiling

592 mm

207 mm

600 - 3000 mm

lelivery ti	me as agreed	l with your sales repr	esentative						
Unit No	Nozzle	Vpri	Δp [Pa]]	Cooling output			Heating output		
	INOZZIE	[m3/h]		Qctot	Qpri [W]	Qc [W]	Qhtot	Qpri [W]	Qh [W]
	2F	91	200	2002	369	1633	4620	369	4251
ЭС	3F	191	200	4120	773	3348	11673	773	10901
IJ-2pipe	4B	218	200	3773	880	2893	8659	880	7779
	41	296	200	4456	1196	3260	9683	1196	8487
	5A	378	200	4699	1526	3173	11438	1526	9912
	2F	91	200	1692	369	1323	4218	369	3849
IJ-4pipe	3F	191	200	3485	773	2713	10613	773	9840
	4B	218	200	3238	880	2358	7750	880	6870
	41	296	200	3823	1196	2627	8899	1196	7703
	5A	378	200	4119	1526	2593	9998	1526	8473

Octot / Ohtot - Total output

22

Opri - Output on the primary air side (cooling or heating)

Qc - Cooling output on the water side (cooling output of the secondary air)

Qh - Heating output on the water side (heating output of the secondary air)

L(length) = 3000 mmVpri - Volume flow of the primary air Δp - Air pressure drop

The technical parameters are set according to the standard EN 15116. In fact, they may vary depending on the location of the unit and the connection type.

REGULATION ELEMENTS

OVERVIEW OF REGULATION METHODS FOR CONVECTORS WITH FAN

IT IS POSSIBLE TO USE YOUR OWN REGULATION.

1) it is necessary to reset the control unit-EB-block (by default it is set to EB-B / EB-C)

REGULATION ELEMENTS

thermostat CH 110 regulation EB-B (RKST110B2)

UT15 thermostat (RKST150B2)

electrothermic head (M30x1,5;12V,NO) (VVRE057703012V000000)

thermostatic head IVAR.T 3000 (M30 x 1,5) (VVRTVT300300000005A)

switched source PSD 55W for DIN rail regulation EB-A/B/C (RZUD055S2)

switched source PSD 90W for DIN rail regulation EB-A/B/C (RZUD090S2)

power supply E2B200W 12V in mounting box (RZMB200E4)

More information and detailed description of each type of regulation can be found on our website

TRENCH HEATERS

FREE-STANDING CONVECTORS

HEADQUARTERS

MINIB, a.s. Na Okraji 335/42 162 00 Prague 6 Czech Republic Tel: +420 604 770 777 E-mail: export@minib.cz www.minib.com

